Math, asked by rupali5948, 1 year ago

If 2 sin(2x – 15) = √3 then find the value of
sin2(2x + 10) + tan2(x + 5).​

Answers

Answered by Tinuarjun
2

Step-by-step explanation:

In pic : convert the angle from radian to degree

Attachments:
Answered by hukam0685
3

Answer:

{sin}^{2} (2x + 10)  +  {tan}^{2} (x + 5) = \frac{13}{12} \\

Step-by-step explanation:

*Note: There is a correction in question.

If 2 sin(3x – 15) = √3 then find the value of sin^2(2x + 10) + tan^2(x + 5).

first find the value of x,for that from the given condition

2 \sin(3x - 15)  =  \sqrt{3}  \\  \\  \sin(3x - 15)  =  \frac{ \sqrt{3} }{2}  \\  \\ \sin(3x - 15) =  \sin(60)  \\  \\ 3x - 15 = 60 \\  \\ 3x = 75 \\  \\ x =  \frac{75}{3}  \\  \\ x = 25 \\

Now,

  {sin}^{2} (2x + 10)  +  {tan}^{2} (x + 5)  \\  \\  {sin}^{2} (2 \times 25 + 10)  +  {tan}^{2} (25 + 5)   \\ \\ {sin}^{2} (60)  +  {tan}^{2} (30) \\  \\ \bigg ({ \frac{ \sqrt{3} }{2} }\bigg)^{2}  +  \bigg({ \frac{1}{\sqrt{3}} }\bigg)^{2}  \\  \\ =   \frac{3}{4}  +  \frac{1}{3}  \\  \\  =  \frac{9 + 4}{12}  \\  \\  =  \frac{13}{12}  \\  \\  {sin}^{2} (2x + 10)  +  {tan}^{2} (x + 5) = \frac{13}{12}

Hope it helps you.

Similar questions