If (2a+ 3 , 2b + 10 ) and ( a + 8 , 3b + 4 ) represent the same point in the co-ordinate
plane, then find a and b.
Answers
Answer:
ANSWER
AB=(3−2)2+(4+1)2=1+25=26
BC=(−2−3)2+(3−4)2=25+1=26
CD=(−3+2)2+(−2−3)2=1+25=26
DA=(−3−2)2+(−2+1)2=25+1=26
AC=(−2−2)2+(3+1)2=16+16=32
B
Answer:
3b+4-2b-10/a+8-2a-3=2b+10-3b-4/2a+3-a-8
b-6/-a+5=-b+6/a-5
(b-6)×(a-5)=(b+6)×(5-a)
ab-5b -6a+30=30+5b-ab-6a
2ab-10b=0
2a-10=0
a=5
and b=0
hope its correct I am not sure about the answer friend please cross check it
or
a=6 and b=6
Step-by-step explanation:
Here we are given two values which correspond to a single point in the x-y plane.
Let us take the value for x-axis as x, and the value for y-axis as y.
So we can write the given values as
2a +5 = x2a+5=x - equation 1
and
a+11=xa+11=x - equation 2
Since both the values correspond to x, we can equate 1 and 2 as,
2a+5 = a+112a+5=a+11
2a-a = 11-52a−a=11−5
a=6a=6
Similarly we can find out the value for b.
3b+2 = y3b+2=y
b+14=yb+14=y
3b+2 = b+143b+2=b+14
3b-b = 14-23b−b=14−2
2b=122b=12
Therefore, b=6Therefore,b=6
x and y coordinates are;
2a+5 = 2*6+5 = 12+5=172a+5=2∗6+5=12+5=17 - x−x
3b+2= 3*6+2 = 18+2 = 203b+