if 3 cos A - 4sin A = 2cos A + sin A, find tan A
Answers
Answered by
0
3×B/H-4×P/H=2×B/H+P/H
Taking lcm
3B-4P/H=2B+P/H
3B-4P/2B+P=1
3B-4P=2B+P
B=5P
P=5/B PUT VALUE OF B
P=1/P
P=1
B=5
tan=P/B
=1/5
Answered by
4
3 cosA - 4 SinA = 2 CosA + SinA
3 cosA - 4 SinA - ( 2 CosA + SinA ) = 0
Opening the bracket ,
3 cosA - 4 SinA - 2 CosA - SinA = 0
CosA - 5 SinA = 0
÷ every term by cosA
∴ 1 - 5 [ SinA / CosA ] = 0
We know,
Sinθ / Cosθ = Tanθ
∴ 1 - 5 tanA = 0
1 = 5 tanA
So, Tan A = 1/5 //
3 cosA - 4 SinA - ( 2 CosA + SinA ) = 0
Opening the bracket ,
3 cosA - 4 SinA - 2 CosA - SinA = 0
CosA - 5 SinA = 0
÷ every term by cosA
∴ 1 - 5 [ SinA / CosA ] = 0
We know,
Sinθ / Cosθ = Tanθ
∴ 1 - 5 tanA = 0
1 = 5 tanA
So, Tan A = 1/5 //
Kimmus:
Hope it helps. If so, plzz mark as brainliest ^_^
Similar questions