Math, asked by adityasinghgahp68ejz, 1 year ago

If (3^log√x-1 to base 3) < (3^log(x-6) to base 3) +3 , what is x?

Answers

Answered by JinKazama1
5
Final Answer : x > 6 .

Steps :
1)

Domain of Given function :
x &gt; 1 \: \: and \: x &gt; 6 - - - (1)
2)
 {3}^{ log_{3}( \sqrt{x - 1} ) } &lt; {3}^{ log_{3}(x - 6) } + 3 \\ = &gt; { \sqrt{x - 1} }^{ log_{3}(3) } &lt; {(x - 6)}^{ log_{3}(3) } + 3 \\ = &gt; \sqrt{x - 1} &lt; ( x - 6) + 3\\ = &gt; \sqrt{x - 1} &lt; x - 3
3) Since both sides are positive by domain constraint.
so squaring both sides .we get.
 = &gt; x - 1 &lt; {x}^{2} - 6x + 9 \\ = &gt; {x}^{2} - 7x + 10 &gt; 0 \\ = &gt; (x - 5)(x - 2) &gt; 0 \\ = &gt; x &lt; 2 \: \: \: \: or \: \: x \: &gt;5

4) By, intersection of domain with these solution,

x > 6
Similar questions