If 3 sin theta = cos theta, find the value of
3 cos square theta+ 2 cos theta
3 cos theta +2
Answers
Answered by
0
Answer:
Step-by-step explanation:
It is given that \sqrt{3}sin\theta=cos{\theta}3sinθ=cosθ
⇒tan{\theta}=\frac{1}{\sqrt{3}}tanθ=31
⇒{\theta}=30^{\circ}θ=30∘
Thus, the value of the given expression is:
\frac{3cos^2{\theta}+2cos{\theta}}{3cos{\theta}+2}3cosθ+23cos2θ+2cosθ
=\frac{3cos^230^{\circ}+2cos30^{\circ}}{3cos30^{\circ}+2}3cos30∘+23cos230∘+2cos30∘
=\frac{3(\frac{3}{4})+2(\frac{\sqrt{3}}{2})}{3(\frac{\sqrt{3}}{2})+2}3(23)+23(43)+2(23)
=\frac{9+4\sqrt{3}}{2(3\sqrt{3}+4)}2(33+4)9+43
w
Answered by
3
Answer:
i lik u ji......
Step-by-step explanation:
i am also muslim....
Similar questions