Math, asked by rvankdoth001, 11 months ago

If 3^(x+1)=9^(x+1) find x?

Answers

Answered by Anonymous
1

3^ ( x + 1 ) = 3²^(x + 1)

bases are same...

x+1 = 2x + 2

x = -1 Answer

Answered by AbhijithPrakash
4

Answer:

3^{\left(x+1\right)}=9^{\left(x+1\right)}\quad :\quad x=-1

Step-by-step explanation:

3^{\left(x+1\right)}=9^{\left(x+1\right)}

\mathrm{Convert\:}9^{x+1}\mathrm{\:to\:base\:}3

9^{x+1}=\left(3^2\right)^{x+1}

3^{x+1}=\left(3^2\right)^{x+1}

\mathrm{Apply\:exponent\:rule}:\quad \left(a^b\right)^c=a^{bc}

\left(3^2\right)^{x+1}=3^{2\left(x+1\right)}

3^{x+1}=3^{2\left(x+1\right)}

\mathrm{If\:}a^{f\left(x\right)}=a^{g\left(x\right)}\mathrm{,\:then\:}f\left(x\right)=g\left(x\right)

x+1=2\left(x+1\right)

\mathrm{Solve\:}\:x+1=2\left(x+1\right)

x+1=2\left(x+1\right)

\mathrm{Expand\:}2\left(x+1\right):\quad 2x+2

x+1=2x+2

\mathrm{Subtract\:}1\mathrm{\:from\:both\:sides}

x+1-1=2x+2-1

\mathrm{Simplify}

x=2x+1

\mathrm{Subtract\:}2x\mathrm{\:from\:both\:sides}

x-2x=2x+1-2x

\mathrm{Simplify}

-x=1

\mathrm{Divide\:both\:sides\:by\:}-1

\dfrac{-x}{-1}=\dfrac{1}{-1}

\mathrm{Simplify}

x=-1

Attachments:
Similar questions