Math, asked by aashish2030, 10 months ago

if 3tan theta=5,then 3sin theta-5cos theta/3sin theta+5cos theta is equal to​

Answers

Answered by sharmakanishka181020
7

3 tanФ =  5

tanФ = 5\2

sinФ \ cos Ф = 5/2

sinФ = 5    cosФ = 2

3 sinФ - 5 cosФ = 3*5 - 5*3 = 15 - 15 = 0

3 sinФ + 5 cosФ = 3*5 + 5*3 = 15 + 15 = 30

o\30 = 0

NOT SURE.........................................................................

Answered by abhi569
10

Answer:

Required value of the given expression is 0.

Step-by-step explanation:

 \implies  \dfrac{3 \sin( \alpha )  - 5 \cos( \alpha ) }{3 \sin( \alpha ) + 5 \cos( \alpha )  }  \\  \\  \\  \implies \dfrac{ \dfrac{3 \sin( \alpha ) - 5 \cos( \alpha )  }{ \cos( \alpha ) } }{ \dfrac{3 \sin( \alpha ) + 5 \cos( \alpha )  }{ \cos( \alpha ) } }  \\  \\  \\  \implies  \dfrac{3 \dfrac{ \sin( \alpha ) }{ \cos( \alpha )  } - 5 \dfrac{ \cos( \alpha ) }{ \cos( \alpha ) }   }{3 \dfrac{ \sin( \alpha ) }{ \cos( \alpha )  }  + 5 \dfrac{ \cos( \alpha ) }{ \cos( \alpha ) }   } \\  \\  \\  \implies  \dfrac{3 \tan( \alpha )  - 5}{3 \tan( \alpha ) + 5 }

Given, 3 tan\alpha = 5

= > ( 5 - 5 ) / ( 5 + 5 )

= > 0

Hence the required value of the given expression is 0.

*Theta is written as alpha

Similar questions