Math, asked by abc331, 1 year ago

if 4+√5÷4-√5= a +b√5, find a and b

Answers

Answered by DaIncredible
1
Hey friend,
Here si the answer you were looking for:
 \frac{ 4+  \sqrt{5} }{4 -  \sqrt{5} }  = a + b \sqrt{5}  \\  \\ on \: rationalizing \: the \: denominator \: we \: get \\  \\  =  \frac{ 4+  \sqrt{5} }{4 -  \sqrt{5} }  \times  \frac{4 +  \sqrt{5} }{4 +  \sqrt{5} }  \\  \\ using \: the \: identity \\  {(a + b)}^{2}   =  {a}^{2}  +  {b}^{2}  + 2ab \\ (a + b)(a - b) =  {a}^{2}  -  {b}^{2}  \\  \\  =  \frac{ {(4)}^{2}  +  {( \sqrt{5} )}^{2}  + 2 \times 4 \times  \sqrt{5} }{ {(4)}^{2}  -  {( \sqrt{5}) }^{2} }  \\  \\  =  \frac{16 + 5 + 8 \sqrt{5} }{16 - 5}  \\  \\   \frac{21 + 8 \sqrt{5} }{11}  = a + b \sqrt{5}  \\  \\ a =  \frac{21}{11}  \\  \\ b =  \frac{8}{11}

Hope this helps!!!!

@Mahak24

Thanks....
☺☺
Similar questions