Math, asked by bhaskar8723, 15 days ago

If 4 cot A=3,then find (sinA+cosA)sinA-cosA)

Answers

Answered by Anonymous
194

⚝ Given :-

  • 4 cot A = 3

⚝ Find :-

  • (sinA+cosA) (sinA-cosA)

⚝ Solution :-

 \leadsto{ \sf{4  \: cot A = 3}}

 \leadsto{ \sf{  cot A = \frac{3}{4}  }}

• As we know that,

 \leadsto{ \sf{cot A  =  \frac{B}{P} }}

• We can say that,

 \leadsto{ \sf{\frac{B}{P}  =  \frac{3}{4} }}

• Thus,

  • Base (B) = 3
  • Perpendicular (P) = 4

CALCULATING HYPOTENUSE :

By Using Pythagoras Theorem :-

= +

⇝ H² = 3² + 4²

⇝ H² = 9 + 16

⇝ H² = 25

⇝ H = √25

⇝ H = 5

• Therefore, Hypotenuse is 5. Now,

\leadsto{ \boxed{ \sf{sin A  =  \frac{P}{H} }}}

• Substitute the values :

\leadsto{ \boxed{ \sf{sin A  =  \frac{4}{5} }}} \:  \bigstar

• Similarly,

\leadsto{ \boxed{ \sf{cos A  =  \frac{B}{H} }}}

• Substitute the values :

\leadsto{ \boxed{ \sf{cos A  =  \frac{3}{5} }}} \:  \bigstar

• Now,

 \leadsto \displaystyle{ \sf{ \frac{(sinA+cosA) }{(sinA-cosA)}}}

 \leadsto \displaystyle{  \sf{ \frac{ \frac{4}{5}  +  \frac{3}{5} }{ \frac{4}{5}  -  \frac{3}{5}  } }}

 \leadsto \displaystyle{  \sf{ \frac{ \frac{7}{5}   }{ \frac{1}{5}   } }}

 \leadsto \displaystyle{ \sf{ \frac{7}{5}  \times \frac{5}{1} }}

 \leadsto \displaystyle{ \sf{ \frac{7}{ \cancel5}  \times \frac{ \cancel5}{1} }}

 \leadsto \displaystyle{ \sf{ \frac{7}{1}  = 7}}

• Henceforth, the value of \displaystyle{ \sf{ \frac{(sinA+cosA) }{(sinA-cosA)}}} is 7.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions