Math, asked by shenapriyanka125, 9 months ago

if 4 sin alpha =5 cos alpha find the value of sec alpha tan alpha​

Answers

Answered by CaptainRisk
1

Answer:

 \frac{5 \sqrt{41} }{16}

Step-by-step explanation:

Given,

4 \sin \alpha = 5 \cos \alpha

 \frac{ \sin\alpha }{ \cos\alpha }  =  \frac{5}{4}

 \tan\alpha =  \frac{5}{4}

From the value of tan a, you can get sec a by using this identity

1 +  \tan^{2} \alpha =  \sec^{2} \alpha

The value of sec a will be

 \sec\alpha =  \frac{ \sqrt{41} }{4}

Hence,

 \sec\alpha \tan\alpha =  \frac{ \sqrt{41} }{4}  \times  \frac{5}{4} =  \frac{5 \sqrt{41} }{16}

Similar questions