Math, asked by anand2485, 9 months ago

If 4^x - 4^x-1 = 24, then (2x)^x is​

Answers

Answered by sowbarnikavv
1

Answer:

hi made your answer is 25√5

love you ❤️ and have a good day bro or sis

thanks for points and don't forget to mark me as a brainliest

Attachments:
Answered by Anonymous
3

GIVEN:-

  • \rm{4^x-4^{x-1}-4=24}

TO FIND:-

  • \rm{(2x)^x}

Now,

\implies\rm{(2)^{2x}-2^{2x-2}=24}

\implies\rm{2^{2x}(1-\dfrac{1}{4})=24}

\implies\rm{2^{2x}\times{\dfrac{3}{4}}=24}

\implies\rm{2^{2x}\times{3}=96}

\implies\rm{2^{2x}=32}

\implies\rm{2^{2x}=2^{5}}

As Bases are same, equating the powers

\implies\rm{2x=5}

\implies\rm{x=\dfrac{5}{2}}

Now,Atq

\implies\sf{(2x)^x}

\implies\sf{2\times{\dfrac{5}{2}}^\frac{5}{2}}

\implies\sf{ 5^\frac{5}{2}}

\implies\sf{25\sqrt{5}}.

Hence, The value of \rm{(2x)^x} is

\sf{25\sqrt{5}}.

Similar questions