if 7sin^2 theta+3cos^2theta=4 find tan theta
Answers
Answered by
4
According to question
7 Sin^2 theta + 3 Cos^2 theta = 4
Separating
3 Sin^2 theta + 3 Cos^2 theta + 4 Sin^2 theta = 4
3 (Sin^2 theta + Cos^ theta) + 4 Sin^2 theta = 4
We know
Sin^2x+Cos^2x = 1
Thus
3*1 + 4 Sin^2 theta =4
4 Sin^2 theta =1
Sin^2 theta = 1/4
Sin theta = 1/2
Putting Sin theta in above equaton
7 *1/4 + 3 Cos^2 theta =4
3 Cos^2 theta = 9/4
Cos^2 theta = 3/4
Cos theta = root 3/2
Thus
tan theta = Sin theta/Cos theta
= 1/2 / root3 / 2
= 1/root3
Thus
tan theta = 1/root3
7 Sin^2 theta + 3 Cos^2 theta = 4
Separating
3 Sin^2 theta + 3 Cos^2 theta + 4 Sin^2 theta = 4
3 (Sin^2 theta + Cos^ theta) + 4 Sin^2 theta = 4
We know
Sin^2x+Cos^2x = 1
Thus
3*1 + 4 Sin^2 theta =4
4 Sin^2 theta =1
Sin^2 theta = 1/4
Sin theta = 1/2
Putting Sin theta in above equaton
7 *1/4 + 3 Cos^2 theta =4
3 Cos^2 theta = 9/4
Cos^2 theta = 3/4
Cos theta = root 3/2
Thus
tan theta = Sin theta/Cos theta
= 1/2 / root3 / 2
= 1/root3
Thus
tan theta = 1/root3
Answered by
1
Step-by-step explanation:
Answer :-
→ tan30° = 1/√3
Step-by-step explanation :-
We have,
→ 7 sin² ∅ + 3 cos² ∅ = 4 .
⇒ 4 sin²∅ + 3 sin²∅ + 3 cos²∅ = 4 .
⇒ 4 sin²∅ + 3( sin²∅ + cos²∅ ) = 4 .
⇒ 4 sin²∅ + 3( 1 ) = 4 . [ ∵ sin²∅ + cos²∅ = 1 ] .
⇒ 4 sin²∅ + 3 = 4 .
⇒ 4 sin²∅ = 4 - 3 .
⇒ 4 sin²∅ = 1 .
⇒ sin²∅ = 1/4 .
⇒ sin ∅ = √(1/4) .
∴ sin ∅ = 1/2 .
But, sin 30° = 1/2 .
Then, sin ∅ = sin 30° .
Then, tan 30° = 1/√3 .
Hence, it is proved .
Similar questions