Math, asked by NymishaM, 1 year ago

If 9^n×3^2×3^n-(27)^n/(3^m×2^3)=3^-3 Show that:m-n=1

Answers

Answered by Anonymous
6

Hey!!

Your correct question:

If \tt {\frac {9^{n} \times 3^{2} \times 3^{n} - 27^{n}}{3^{3m} \times 2^{3}} = 3^{-3}}\\, show that : m - n = 1

Attachments:
Answered by BrainlyVirat
12

Answer :

 \tt {\frac{9 {}^{n}  \times 3 {}^{2} \times 3 {}^{n}   - 27 {}^{n} }{3 {}^{3m} \times 2 {}^{ - 3}}  }  =   {(3)}^{ - 3}

  \tt{\rightarrow \frac{3 {}^{2n + 2 + n}  - 3 {}^{3n}  }{3 {}^{3m} \times 2 {}^{3}}  =    {(3)}^{ - 3}}

\tt{\rightarrow \frac{3 {}^{3n + 2}  - 3 {}^{3n}  }{3 {}^{3m} \times 2 {}^{3}}  =   {(3)}^{ - 3}}

Taking 3^3n common in the numerator,

  \tt{ \rightarrow\frac{3 {}^{3n} (3 {}^{2}  - 1)}{ {3}^{3m} \times 2 {}^{3}  }  =   {(3)}^{ - 3}}

 \tt{ \rightarrow\frac{3 {}^{3n} (9 - 1)}{ {3}^{3m} \times 8  }  =   {(3)}^{ - 3}}

  \tt{\rightarrow \frac{3 {}^{3n} }{3 {}^{3m} }  =  {(3)}^{ - 3}}

Therefore,

 \tt {(3) {}^{3n - 3m}  = (3) {}^{ - 3}}

  \tt{ \rightarrow3n - 3m =  - 3}

 \tt {\rightarrow n - m =  - 1}

  \huge \tt{\rightarrow m - n = 1}

Hence, Proved.

Similar questions