Math, asked by parshotaml085, 5 months ago

if. a-1/a=4 ,then a^2+1/a^2=​

Answers

Answered by Anonymous
1

\large  \sf\underline{ \underline{ \red{given: }}} \\  \\  \sf{a -  \frac{1}{a} = 4 } \\  \\

 \large  \sf\underline{ \underline{ \red{to \: find : }}} \\  \\  \sf{ {a}^{2}  +  \frac{1}{ {a}^{2} } } \\  \\

\large  \sf\underline{ \underline{ \red{to \: know : }}} \\  \\  \boxed{ \tt{(x +  {y)}^{2} =  {x}^{2} +  {y}^{2}   + 2xy }} \\  \\

 \large  \sf\underline{ \underline{ \red{solution : }}} \\  \\

  \\  \\  \sf{a -  \frac{1}{a}  = 4} \\  \\   \\ \sf{squaring \: both \: sides ..} \\  \\  \\  \sf{(a -  { \frac{1}{a} )}^{2} } =  {4}^{2}  \\

According to identity ,

Here ,

  • x = a

  • y = 1/a

Putting values ,

 \\   \sf{ {a}^{2} + { (\frac{1}{a} )}^{2}  + 2( \cancel{a})( \frac{1}{ \cancel{a}} ) = 16 } \\  \\ \\   \sf{ {a}^{2} +  \frac{1}{ {a}^{2}  }  + 2 = 16 } \\  \\  \\   \implies \boxed{\sf{ \pink {{a}^{2} +  \frac{1}{ {a}^{2} }  = 14 }}}

 \\

Other identities :-

  • ( x + y )² = x² + 2xy + y²

  • ( x + y ) ( x - y ) = x² - y²

  • ( x + a ) ( x + b ) = x² + ( a + b )x + ab

Similar questions