if a = 3 + 2√2 then,
√{ ( a^6 + a⁴ + a² + 1)/a³} = ???
Answers
Answered by
13
√(a^6+a^4+a^2+1)/a^3=√(a^3+1/a^3+a+1/a)
(a+1/a)^3=a^3+1/a^3+3(a+1/a)
a+1/a=3+2√2+1/(3+2√2)
=3+2√2+3-2√2=6
(a+1/a)^3=a^3+1/a^3+3(a+1/a)
216-18=a^3+1/a^3
198=a^3+1/a^3
√(a^3+1/a^3+a+1/a)=√204=2√51
(a+1/a)^3=a^3+1/a^3+3(a+1/a)
a+1/a=3+2√2+1/(3+2√2)
=3+2√2+3-2√2=6
(a+1/a)^3=a^3+1/a^3+3(a+1/a)
216-18=a^3+1/a^3
198=a^3+1/a^3
√(a^3+1/a^3+a+1/a)=√204=2√51
abhi178:
nice answer
Answered by
18
Given, a = 3 + 2√2 ...( i )
1 / a = 1 / ( 3 + 2√2 )
1 / a = 3 - 2√2 ...( ii )
⇒ a = ( 3 + 2√2 )
⇒ a^2 = 9 + 8 + 12√2
⇒ a^2 = 17 + 12√2 ...( iii )
⇒ 1 / a = 3 - 2√2
⇒ 1 / a^2 = 9 + 8 - 12√2
⇒ 1 / a^2 = 17 - 12√2 ...( iv )
Given equation : -
We know, a^3 + 1 / a^3 = ( a + 1 / a )( a^2 - 1 + 1 / a^2 )
Now, substituting the values of a + 1 / a + a^2 + 1 / a^2 from ( i ) , ( ii ) , ( iii ) and ( iv ) respectively,
Hence, the value of the given equation is 2√51
Similar questions