if a=√5+√4 find value of √a+1/√a
Answers
Answered by
3
Here is your answer.
a = √5 + √4
√a + 1/√a = ?
Using identity:
(√a + 1/√a)² = (√a)² + (1/√a)² + 2
(√a + 1/√a)² = a + 1/√a + 2
(√a + 1/√a)² = (√5 + √4) + (1/√5 + √4) + 2
(√a + 1/√a)² = (√5 + 2) + (1/√5 + 2) + 2
_______________________________
Rationalize
1/√5 + 2
(1/√5 + 2) * (√5 - 2 / √5 - 2)
√5 - 2 / (√5)² - (2)²
√5 - 2
_______________________________
(√a + 1/√a)² = √5 + 2 + √5 - 2 + 2
(√a + 1/√a)² = 2√5 + 2
√a + 1/√a = √(2√5 + 2) ...[Ans]
a = √5 + √4
√a + 1/√a = ?
Using identity:
(√a + 1/√a)² = (√a)² + (1/√a)² + 2
(√a + 1/√a)² = a + 1/√a + 2
(√a + 1/√a)² = (√5 + √4) + (1/√5 + √4) + 2
(√a + 1/√a)² = (√5 + 2) + (1/√5 + 2) + 2
_______________________________
Rationalize
1/√5 + 2
(1/√5 + 2) * (√5 - 2 / √5 - 2)
√5 - 2 / (√5)² - (2)²
√5 - 2
_______________________________
(√a + 1/√a)² = √5 + 2 + √5 - 2 + 2
(√a + 1/√a)² = 2√5 + 2
√a + 1/√a = √(2√5 + 2) ...[Ans]
yahootak:
wait a min. doung calculation , don't report it
Answered by
6
Answer:
√a + 1/√a = ± √2√(√5 + 1 )
Step-by-step explanation:
a = √5 + √4
⇒ ( √a + 1/√a )² = a + 1/a + 2
⇒ ( √a + 1/√a )² = √5 + √4 + 1 / ( √5 + √4 ) + 2
⇒ ( √a + 1/√a )² = √5 + √4 + ( √5 - √4 )/( 5 - 4 ) + 2
Hey kidding ??√4 = 2
⇒ ( √a + 1/√a )² = √5 + 4 + ( √5 - 2 )
⇒ ( √a + 1/√a )² = 2√5 + 2
⇒ √a + 1/√a = √2√(√5 + 1 )
WOW O_o
Nice equation .
Similar questions