Math, asked by karmakarjibanesh, 10 months ago

If a and ß are the zeroes
of a polynomial such
that a + B = -6 and aß =
5, then find the
polynomial. (2016 D)​

Answers

Answered by BrainlyConqueror0901
35

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Polynomial\to x^{2}+6x+5=0}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:\implies  \alpha  +  \beta  =  - 6 \\  \\ \tt:\implies  \alpha \beta  = 5 \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies Polynomial = ?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies  {x}^{2}  - (sum \: of \: zeroes)x + (product \: of \: zeroes) = 0 \\  \\ \tt:  \implies  {x}^{2}  - ( \alpha  +  \beta )x + ( \alpha  \beta ) = 0 \\  \\ \tt:  \implies  {x}^{2}  - ( - 6)x+5= 0 \\  \\  \green{\tt:  \implies  {x}^{2}  +6x + 5 = 0} \\  \\   \green{\tt \therefore Polynomial  \to  {x}^{2}  + 6x + 5 = 0} \\  \\  \bold{ \blue{Some \: related \: formula}} \\   \orange{\tt \circ \: D =  {b}^{2}  - 4ac} \\  \\ \orange{\tt \circ \: x  =  \frac{ - b \pm \sqrt{D} }{2a} }

Answered by ItzArchimedes
41

CORRECT QUESTION:

If α & β are the roots of the quadratic polynomial such that α + β = - 6 & αβ = 5 , the find the quadratic polynomial

GIVEN:

  • α + β = - 6
  • αβ = 5

TO FIND:

  • Quadratic polynomial

SOLUTION:

We know that

Quadratic polynomial = x² - ( sum of roots ) x + product of roots

→ Quadratic polynomial = x² - ( α + β )x + αβ

→ Quadratic polynomial = x² - ( - 6 )x + 5

→ Quadratic polynomial = x² + 6x + 5

Hence, required quadratic polynomial = + 6x + 5

MORE INFORMATION:

  • Discriminant ( D ) or ∆ = b² - 4ac
  • Quadratic equation formula :

x = - b±√b² - 4ac/2a

Substituting b² - 4ac = ∆

  • x = - b ± √∆/2a
Similar questions