Math, asked by manasparashar2003, 1 year ago

if a and b are rational numbers and √11+√77/√11-√77=a-b√77,find the value of a and b

Answers

Answered by Shinchan001
0

 \frac{ \sqrt{11}  +  \sqrt{77} }{ \sqrt{11} -  \sqrt{77}  }  = a - b \sqrt{77}  \\  \\
L.H.S,

On rationalizing the denominator we get,

 =  \frac{ \sqrt{11}  +  \sqrt{77} }{ \sqrt{11}  -  \sqrt{77} }  \times  \frac{ \sqrt{11} +  \sqrt{77}  }{ \sqrt{11}  +  \sqrt{77} }  \\  \\  =  \frac{ {( \sqrt{11} )}^{2}  +  {( \sqrt{77}) }^{2} + 2( \sqrt{11}  )( \sqrt{77} )}{ {( \sqrt{11} )}^{2} -  {( \sqrt{77} )}^{2}  }  \\  \\  =  \frac{11 + 77 + 2 \sqrt{ {11}^{2} \times 7 } }{11 - 77}  \\  \\  =  \frac{88 + 22 \sqrt{7} }{ - 66}  \\  \\  =  \frac{22(4 +  \sqrt{7} )}{ 22( - 3)}  \\  \\  =  \frac{ - 4 -  \sqrt{7} }{3}  \\  \\  \bf \: a \:  =  \:  -  \frac{4}{3}  \: and \: b \:  =  \:   \frac{1}{3}
Similar questions