Math, asked by sneha10852, 1 year ago

if a and b are rational numbers and

 \frac{4 + 3 \sqrt{5} }{4 - 3 \sqrt{5} }  = a + b \sqrt{5}
find the values of a and b

Answers

Answered by sushiladevi4418
19

Answer:

a = 61/ 29, b = 24/29.

Step-by-step explanation:

Consider LHS \frac{4 + 3\sqrt{5} }{4 - 3\sqrt{5} }

Now to simplify ,rationalize the denominator,

we get

\frac{4 + 3\sqrt{5} }{4 - 3\sqrt{5} }  = \frac{4 + 3\sqrt{5} }{4 - 3\sqrt{5} }   x  \frac{4 + 3\sqrt{5} }{4+ 3\sqrt{5} }

on further solving , we get

= \frac{({4 + 3\sqrt{5}} )^{2} }{({4 + 3\sqrt{5}} )({4 - 3\sqrt{5}} )}

Using algebraic identity

(a+b)^{2}  = a^{2}  + b^{2}  + 2ab\\(a+b)(a-b) =  a^{2}  - b^{2}

we get,

\frac{16 + 45 + 24\sqrt{5} }{16 - 45}  

= \frac{61 + 24\sqrt{5} }{29}

Compare left side with right side, we get

\frac{61 + 24\sqrt{5} }{29}  = a + b√5

So, a = 61/ 29

and b = 24/29.

Similar questions