Math, asked by karthi56, 7 months ago

if a and b are roots of equation x^2+x-7=0 then find a^3+b^3​

Answers

Answered by sheelamsingh1990
2

Thus is your answer

Follow me

Attachments:
Answered by hooriyakafeel75
0

Answer:

⇒ α and β are the roots of the equation x

2

−7x+1=0

Here, a=1,b=−7,c=1

⇒ αβ=

a

c

=

1

1

=1 ----- ( 1 )

⇒ α

2

β

2

=1 ----- ( 2 )

⇒ α+β=

a

−b

=−

1

−7

=7 ----- ( 3 )

⇒ (α+β)

2

2

2

+2αβ

⇒ (7)

2

2

2

+2(1) [ Using ( 1 ) and ( 3 ) ]

⇒ 49=α

2

2

+2

∴ α

2

2

=47 ------- ( 4 )

Now,

(α−7)

2

1

+

(β−7)

2

1

=

(α−7)

2

(β−7)

2

(β−7)

2

+(α−7)

2

=

2

−14β+49)(α

2

−14α+49)

β

2

−14β+49+α

2

−14α+49

=

α

2

β

2

−14αβ

2

+49β

2

−14α

2

β+196αβ−686β+49α

2

−686α+2401

α

2

2

−14(α+β)+98

=

α

2

β

2

−14αβ(α+β)+49(α

2

2

)+196αβ−686(α+β)+2401

47−14(7)+98

[ Using ( 3 ) and ( 4 ) ]

=

1−14(1)(7)+49(47)+196(1)−686(7)+2401

47

=

1−98+2303+196−4802+2401

47

=

1

47

(α−7)

2

1

+

(β−7)

2

1

=47

Similar questions