Math, asked by anmol24kaursethi, 11 months ago

the diameter of a roller is 84cm and its length is 120 cm It takes 500 complete revolutions to move once cover to level a playground.find area of playground in m²​ .plsss helpp

Answers

Answered by Anonymous
2

Step-by-step explanation:

d = 84 cm

r = 42cm = 0.42m

h = 120 cm = 1.2m

c.s.a. of cylindrical roller = =2×22/7×0.42×1.2

=2×22×0.6×1.2

=3.168 m^2

As it takes 500 revolutions, so multiply the area of roller by 500

3.168×500

=1584 m^2

Hence the roller covers 1584 m^2 of area in 500 revolutions

Answered by Anonymous
17

\bf{\underline{\underline \blue{Solution:-}}}

\sf\underline{\red{\:\:\: AnswEr:-\:\:\:}}

  • The area of the playground in metre = 1584

\sf\underline{\red{\:\:\: Given:-\:\:\:}}

  • The diameter of a roller is 84cm and its length is 120 cm. It takes 500 complete revolutions to move once cover to level a playground.

\sf\underline{\red{\:\:\: Need\:To\: Find:-\:\:\:}}

  • The area of the playground in metre = ?

\bf{\underline{\underline \blue{Explanation:-}}}

\sf\underline{\red{\:\:\: Formula\:used\: here:-\:\:\:}}

\bigstar \:  \boxed{ \sf \: Curved \: surface \:area \:of\: the\: roller = 2\pi rh } \\\\

\sf\underline{\red{\:\:\: Now,Putting\:the\: values:-\:\:\:}}

\dashrightarrow \sf {\Bigg(2 \times \frac{22}{7} \times 42 \times 120\Bigg) \:Cm^2} \\\\

\dashrightarrow \sf {\Bigg(264 \times 120\Bigg)\:Cm^2} \\\\

\dashrightarrow \sf {31680 \: Cm^2} \\\\

\sf\underline{\red{\:\:\: ThereFore:-\:\:\:}}

  • Area covered by the roller in 1 revolution is 31680 cm².

\sf\underline{\green{\:\:\: Now:-\:\:\:}}

➪Area covered by the roller in 500 revolutions =  \sf {31680 \times 500\:Cm^2}

➪Area covered by the roller in 500 revolutions =  \sf {15840000\:Cm^2}

\sf\underline{\red{\:\:\: ThereFore:-\:\:\:}}

  • Area covered by the roller in 500 revolutions is 15840000 cm².

\sf\underline{\green{\:\:\: Thus:-\:\:\:}}

\dashrightarrow \textbf {Area of the playground =}  \sf {\frac{15840000}{100 \times 100} }

\dashrightarrow \textbf {Area of the playground =} \sf {1584\:m^2}

\sf\underline{\red{\:\:\: Hence:-\:\:\:}}

  • The area of the playground in metre is 1584 m².

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

Similar questions