If |A+B| = |A-B| , then what is the angle between A and B ?
Answers
Answered by
4
If A+B=A-B what is the angle between A and B
I assume the question means |A+B|=|A-B| where A and B are non-zero vectors.
Squaring both sides,
|A+B|2=|A−B|2|A+B|2=|A−B|2
Since A.A=|A|2A.A=|A|2
|A+B|2=|A−B|2|A+B|2=|A−B|2
(A+B).(A+B)=(A−B).(A−B)(A+B).(A+B)=(A−B).(A−B)
A.A+A.B+B.A+B.B=A.A−A.B−B.A+B.BA.A+A.B+B.A+B.B=A.A−A.B−B.A+B.B( Using distributive property)
|A|2+2A.B+|B|2=|A|2−2A.B+|B|2|A|2+2A.B+|B|2=|A|2−2A.B+|B|2
4A.B=04A.B=0
A.B=0A.B=0
|A||B|cos(theta)=0|A||B|cos(theta)=0
Since A and B are non-zero vectors, A and B must be perpendicular as cos (90 degrees) = 0
I assume the question means |A+B|=|A-B| where A and B are non-zero vectors.
Squaring both sides,
|A+B|2=|A−B|2|A+B|2=|A−B|2
Since A.A=|A|2A.A=|A|2
|A+B|2=|A−B|2|A+B|2=|A−B|2
(A+B).(A+B)=(A−B).(A−B)(A+B).(A+B)=(A−B).(A−B)
A.A+A.B+B.A+B.B=A.A−A.B−B.A+B.BA.A+A.B+B.A+B.B=A.A−A.B−B.A+B.B( Using distributive property)
|A|2+2A.B+|B|2=|A|2−2A.B+|B|2|A|2+2A.B+|B|2=|A|2−2A.B+|B|2
4A.B=04A.B=0
A.B=0A.B=0
|A||B|cos(theta)=0|A||B|cos(theta)=0
Since A and B are non-zero vectors, A and B must be perpendicular as cos (90 degrees) = 0
qazwsx4444:
yeah
Similar questions