Math, asked by palakj9114, 9 months ago

if A,B and A+B are positive acute angles , prove that
sin(A+B) = sin A . cos B + cos A . sin B​

Answers

Answered by Anonymous
5

Step-by-step explanation:

ANSWER

3

2sin2A−

2

1

sin2B=0

Or

sin60

0

sin2A−cos60

0

sin2B=0

Or

cos60

0

sin2B−sin60

0

sin2A=0 ...(i)

Or

cos60

0

cos2A−sin60

0

sin2A=0 ... considering cos2A=sin2B

cos(60

0

−2A)=0

Or

60

0

−2A=90

0

,−90

0

Or

A=−15

0

,75

0

Now

cos2A=sin2B

Or

cos(−30

0

)=cos(

2

π

−2B)

Or

2B=120

0

Or

B=60

0

and

cos(150

0

)=cos(90

0

−2B)

Or

B=−30

0

Similarly from i we get

cos60

0

sin2B−sin60

0

sin2A=0

sin(2B−60

0

)=0 considering sin2A=cos2B.

Hence

2B−60

0

=0,180

0

Or

B=30

0

,120

0

Now

sin2A=cos2B

Or

sin2A=cos60

0

2A=30

0

A=15

0

And

sin2A=cos(120

0

)

sin2A=−

2

1

Or

2A=−30

0

Or

A=−15

0

.

Hence possible values of A {−15

0

,15

0

,75

0

}

Possible values of B {−30

0

,30

0

,60

0

,120

0

}

Now A and B are positive Acute angles

Hence Aϵ{15

0

,75

0

}

Bϵ{30

0

,60

0

}

However only 15

0

,30

0

satisfy the other equation.

Similar questions