Prove that,tan 55 - tan 35=2tan20
Answers
Answered by
0
Given : tan 55 - tan 35=2tan20
To Find : prove that
Solution:
55 = 20 + 35
=> 20 = 55 - 35
taking Tan both sides
=> Tan 20 = Tan ( 55 - 35)
=> Tan 20 = (Tan 55 - Tan 35) /(1 + Tan55 . Tan35)
Tan35 = Cot55 = 1/tan55 => Tan55 . Tan35 =1
=> Tan 20 = (Tan 55 - Tan 35) /(1 + 1)
=> Tan 20 = (Tan 55 - Tan 35) /2
=> 2 Tan 20 = Tan 55 - Tan 35
=> Tan 55 - Tan 35 = 2 Tan 20
QED
Hence Proved
learn More:
Cot 565°- tan 205°/ tan 245° - cot 295° = a cos² 25° + b, then find the ...
https://brainly.in/question/16584514
If tan A - tan B = x and cot B - cot A = y , then cot (AB) is equal to
https://brainly.in/question/481093
Similar questions
English,
4 months ago
Math,
4 months ago
India Languages,
9 months ago
Science,
9 months ago
Business Studies,
1 year ago
Physics,
1 year ago