Math, asked by soma63860, 9 months ago

Prove that,tan 55 - tan 35=2tan20

Answers

Answered by amitnrw
0

Given :  tan 55 - tan 35=2tan20

To Find : prove that

Solution:

 55 = 20 + 35

=> 20  = 55 - 35

taking Tan both sides

=> Tan 20 = Tan ( 55 - 35)

=> Tan 20  = (Tan 55 - Tan 35) /(1 + Tan55 . Tan35)

Tan35 = Cot55 = 1/tan55 => Tan55 . Tan35 =1

=> Tan 20  = (Tan 55 - Tan 35) /(1 + 1)

=> Tan 20  = (Tan 55 - Tan 35) /2

=> 2 Tan 20  = Tan 55 - Tan 35

=> Tan 55 - Tan 35 = 2 Tan 20  

QED

Hence Proved

learn More:

Cot 565°- tan 205°/ tan 245° - cot 295° = a cos² 25° + b, then find the ...

https://brainly.in/question/16584514

If tan A - tan B = x and cot B - cot A = y , then cot (AB) is equal to

https://brainly.in/question/481093

Similar questions