Math, asked by StrongGirl, 9 months ago

If a, b are roots of equation 7x^2 — 3x + 2 = 0 then find the value of

Attachments:

Answers

Answered by tsjananithendral
2

Step-by-step explanation:

is it correct? kindly reply for it.

Attachments:
Answered by amansharma264
10

ANSWER.

 \sf \to \:  \dfrac{ \alpha }{1 -  \alpha  {}^{2} }  +  \dfrac{ \beta }{1 -  { \beta }^{2} }  =  \dfrac{ - 21}{16}

EXPLANATION.

 \sf \to \:  \alpha  \: and \:  \beta  \: are \: the \: \: roots \: of \: the \: equation \:  = 7 {x}^{2} -3x + 2 = 0 \\  \\  \sf \to \: sum \: of \: roots \: of \: equation \:  =  \alpha  +  \beta  =  -  \dfrac{b}{a}   \\  \\  \sf \to \:  \alpha  +  \beta  =  \dfrac{3}{7}   \\  \\  \sf \to \: product \: of \: roots \: of \: equation \:  = \alpha  \beta  =   \dfrac{c}{a} \\  \\  \sf \to \:  \alpha  \beta  =  \dfrac{2}{7}

 \sf \to \: value \: of \:  =  \dfrac{ \alpha }{1 -  { \alpha }^{2} } +  \dfrac{ \beta }{1 -  { \beta }^{2} }   \\  \\  \sf \to \: take \: lcm \: of \: the \: equation \\  \\  \sf \to \:  \dfrac{ \alpha (1 -  { \beta }^{2}) +  \beta (1 -  { \alpha }^{2}  )  }{(1 -  \alpha  {}^{2} )(1 -  { \beta }^{2}) }  \\  \\  \sf \to \:  \dfrac{ \alpha  -  \alpha  { \beta }^{2}  +  \beta  -  \beta  { \alpha }^{2} }{(1 -  { \alpha }^{2})(1 -  \beta  {}^{2}  )}  \\  \\  \sf \to \:  \dfrac{( \alpha  +  \beta ) -  \alpha  \beta ( \alpha  +  \beta )}{(1 -  \alpha  {}^{2})(1 -  { \beta }^{2})  }

 \sf \to \:  \dfrac{( \alpha  +  \beta ) -  \alpha  \beta ( \alpha  +  \beta )}{1 - [( \alpha  +  \beta ) {}^{2}  - 2 \alpha  \beta]  + ( \alpha  \beta ) {}^{2} }

=> 3/7 - 2/7X 3/7 / 1 - [ (3/7)² - 2 X 2/7] + 4/49

=> 15/49 / 1 + 19/49 + 4/49

=> 15/49 / 72/49

=> 15/49 X 49/72

=> 15/72 = 5 / 24

Hence option [ B ] is correct.

Similar questions