Math, asked by Shankarreddy151, 1 year ago

if a/b+b/a=1,then a3+b3=

Answers

Answered by siddhartharao77
363
Given a/b + b/a = 1

           (a^2 + b^2)/ab = 1.

           a^2 + b^2 = ab   --- (1)


Then a^3 + b^3 = (a + b)(a^2 + b^2 - ab)

                           = (a + b)(ab - ab)  (From (1))

                           = 0.


Hope this helps! :)
Answered by smithasijotsl
2

Answer:

The value of a³+b³ = 0

Step-by-step explanation:

Given

\frac{a}{b}+\frac{b}{a}  =1\\

To find,

The value of a³+b³

Recall the formula

a³+b³ = (a+b)(a² -ab + b²)

Solution

Since \frac{a}{b}+\frac{b}{a}  =1\\, we have

\frac{a^2+b^2}{ab}  = 1

a² +b² = ab --------------(1)

a³+b³ = (a+b)(a² -ab + b²)

=(a+b)(ab -ab) (from equation(1)

= 0

a³+b³ = 0

#SPJ2

Similar questions