if a+b+c =0 , then a^2/bc+b^2/ca+c^2/ab=
Answers
Question :--- if a+b+c = 0 , Find the value of (a²/bc) + (b²/ca) + (c²/ab) = ?
Formula used :---
→ a³ + b³ + c³ = (a+b+c)(a² + b² + c² -ab - bc - ca) + 3abc ...
Solution :----
→ (a²/bc) + (b²/ca) + (c²/ab)
Multiplying each parts with a , b and c respectively , we get,
→ (a³/abc) + (b³/abc) + (c³/abc)
Taking LCM now,
→ (a³+b³+b³)/abc
Putting value of (a³+b³+c³) From above Told Formula we get, now,
→ (a+b+c)(a² + b² + c² -ab - bc - ca) + 3abc / abc
Now, putting given value of (a+b+c=0) in Numerator we get,
→ 0 + 3abc/abc
→ 3abc/abc
→ 3 (Ans).
Hence, the value of (a²/bc) + (b²/ca) + (c²/ab) is 3.
Multiplying each parts with a , b and c respectively , we get,
→ (a³/abc) + (b³/abc) + (c³/abc)
Taking LCM now,
→ (a³+b³+b³)/abc
Putting value of (a³+b³+c³) From above Told Formula we get, now,
→ (a+b+c)(a² + b² + c² -ab - bc - ca) + 3abc / abc
Now, putting given value of (a+b+c=0) in Numerator we get,
→ 0 + 3abc/abc
→ 3abc/abc
→ 3 (Ans).
Hence, the value of (a²/bc) + (b²/ca) + (c²/ab) is 3.