if a+b+c =0 , then evaluate a^3+b^3+c^3
Diya08:
it is equal to 3abc
Answers
Answered by
5
a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ca)a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ca)
Using the above identity:
a3+b3+c3=(a+b+c)(a2+b2+c2−ab−bc−ca)+3abca3+b3+c3=(a+b+c)(a2+b2+c2−ab−bc−ca)+3abc
Given a+b+c=0
So, a3+b3+c3=3abca3+b3+c3=3abc
Hope it helps!
Using the above identity:
a3+b3+c3=(a+b+c)(a2+b2+c2−ab−bc−ca)+3abca3+b3+c3=(a+b+c)(a2+b2+c2−ab−bc−ca)+3abc
Given a+b+c=0
So, a3+b3+c3=3abca3+b3+c3=3abc
Hope it helps!
Similar questions