Math, asked by Manny6, 1 year ago

if a+b+c=0,then prove that a⁴+ b⁴+ c⁴=2(b²c²+c²a²+a²b²)

Answers

Answered by Golda
11
Solution:-
Given a+b+c = 0 .....(1)
To prove : a⁴+b⁴+c⁴ = 2(a²b²+b²c²+a²c²)
(a+b+c)² = a²+b²+c²+2ab+2bc+2ca
(0²) = a²+b²+c²+2ab+2bc+2ca  From (1)
Or, a²+b²+c² = - 2(ab+bc+ca) ....(2)
On squaring both sides of (2), we get
⇒ a⁴+b⁴+c⁴+2a²b²+2b²c²+2c²a² = 4a²b²+4b²c²+4c²a²+8ab²c+8abc²+8a²bc
⇒ a⁴+b⁴+c⁴ = 4a²b²+4b²c²+4c²a²+8ab²c+8abc²+8a²bc-(2a²b²+2b²c²+2c²a²)
⇒ a⁴+b⁴+c⁴ = 4a²b²+4b²c²+4c²a²+8ab²c+8abc²+8a²bc-2a²b²-2b²c²-2c²a²
⇒ a⁴+b⁴+c⁴ = 2a²b²+2b²c²+2c²a²+8ab²c+8abc²+8a²bc
⇒ a⁴+b⁴+c⁴ = 2(a²b²+b²c²+c²a²)+8abc(b+c+a)
⇒ a⁴+b⁴+c⁴ = 2(a²b²+b²c²+c²a²)+8(0) ...From (1)
⇒ a⁴+b⁴+c⁴ = 2(a²b²+b²c²+c²a²)
Hence proved.
Answered by ajmonikavijay
0

Answer:

  • a⁴+b⁴+c⁴=2(a²b²+b²c²+c²a²)
Attachments:
Similar questions