Math, asked by PragyaTbia, 1 year ago

If A + B + C = 0, then prove that sin 2A + sin 2B + sin 2C = -4 sin A sin B sin C.

Answers

Answered by MaheswariS
24

Answer:


sin 2A + sin 2B + sin 2C

= 4 sin A sin B sin C.



Step-by-step explanation:


Actually your question may be

A + B + C = 180⁰ prove that sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C.


Formula used:


1. sinC + sinD

= 2 sin ((C+D)/2) cos((C - D)/2)


2. cos(180⁰ - A) = - cosA


3. sin2A = 2 sinA cosA




sin 2A + sin 2B + sin 2C


= 2 sin((2A+2B)/2) cos((2A-2B)/2)

+ 2 sinC cosC


= 2 sin(A+B) cos(A-B) + 2 sinC cosC


= 2 sin(180⁰-C) cos(A-B) + 2 sinC cosC


= 2 sinC cos(A-B) + 2 sinC cosC


= 2 sinC [cos(A-B) + cosC]


= 2 sinC [cos(A-B) + cos(180⁰ -(A+B))]


= 2 sinC [cos(A-B) - cos(A+B)]


= 2 sinC [ 2 sinA sinB ]


= 4 sinA sinB sinC


I hope this answer helps you
















Answered by sahgalmedhavi
11

Answer:

Step-by-step explanation:

A+B+C=0

A+B=-C -----1

LSH=sin2A+sin2B+sin2C

2sinA+BcosA-B+sin2C         [USING IDENTITY sin2A]

putting A+B as -C from 1

2sin(-C)cosA-B+sin2C

-2sinCcosA-B+2sinCcosC

Taking common

2sinC[-cos(A-B)+cosC]         [USING IDENTITY (cosC-cosD)]

2sinC[-2sin(C+A-B)/2sin(C-(A-B))/2]

putting again the value of C

-4sinC[sin(-A-B+A-B)/2sin(-A-B-A+B)/2]

-4sinC(sin-Bsin-A)

-4sinAsinBsinC

HENCE PROVED

Similar questions