If A + B + C = , then prove that sin 2A + sin 2B - sin 2C = -4 sin A sin B sin C.
Answers
Answered by
1
Answer:
Step-by-step explanation:
Formula used:
1.sinC - sinD= 2cos((C+D)/2)sin((C-D)/2)
2.sin2A= 2 sinA cosA
=2sinA[cosA-sin(B-C)]
=2sinA[cos(270-(B+C))-sin(B-C)]
=2sinA[-sin(B+C))-sin(B-C)]
=-2sinA[sin(B+C))+sin(B-C)]
= =-2sinA[2sinB.cosC]
=-4sinAsinB.cosC
Similar questions