Math, asked by ramchetry75gmailcom, 10 months ago

if a+b+c=0 then show that a2(b+c)+b2(c+a)+c2(a+b)+3abc=0​

Answers

Answered by harendrachoubay
73

a^2(b+c)+b^2(c+a)+c^2(a+b)+3abc=0, proved.

Step-by-step explanation:

We have,

a + b + c = 0

Show that, a^2(b+c)+b^2(c+a)+c^2(a+b)+3abc=0.

a + b + c = 0

⇒ a + b = - c, b + c = - a and c + a = - b

L.H.S. = a^2(b + c)+ b^2(c + a) + c^2(a + b) + 3abc

Put a + b = - c, b + c = - a and c + a = - b, we get

= a^2(- a)+ b^2(- b) + c^2(- c) + 3abc

= -a^{3} -b^{3}-c^{3} + 3abc

= - (a^{3}+b^{3}+c^{3} - 3abc)

We know that,

a^{3}+b^{3}+c^{3} - 3abc = (a + b + c)(a^{2} +b^{2} +c^{2} -ab-bc-ca)

= - (a^{3}+b^{3}+c^{3} - 3abc)= (0)(a^{2} +b^{2} +c^{2} -ab-bc-ca)

= 0

= R.H.S., Proved

Thus, a^2(b+c)+b^2(c+a)+c^2(a+b)+3abc=0, proved.

Answered by shivanijain4931
1

Answer:

It is proved that, a^2(b+c)+b^2(c+a)+c^2(a+b)+3abc=0.

Step-by-step explanation:

We have,

a+b+c=0

Show that, a^2(b+c)+b^2(c+a)+c^2(a+b)+3abc=0

\because a+b+c=0

\Rightarrow a+b=-c,b+c=-a

L.H.S=a^2(b+c)+b^2(c+a)+c^2(a+b)+3abc

Put a+b=-c,b+c=-a and c+a=-b, we get

=a^2(-a)+b^2(-b)+c^2(-c)+3abc

=-a^3-b^3-c^3+3abc

=-(a^3+b^3+c^3-3abc)

We know that,

a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)

=-(a^3+b^3+c^3-3abx)=(0) (a^2+b^2+c^2-ab-bc-ca)

=0

=R.H.S. Proved

Thus, a^2(b+c)+b^2(c+a)+c^2(a+b)+3abc=0, proved.

#SPJ2

Similar questions