If a+b+c=1
a^2+b^2+c^2=2 and
a^3+b^3+c^3=3 then find the value of
a^4+b^4+c^4 ?
Answers
a + b + c = 1
a² + b² + c² = 2
a³ + b³ + c³ = 3
(a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
1² = 2 + 2(ab + bc + ca)
-1/2 = (ab + bc + ca)-------(1)
again,
a³ + b³ + c³ - 3abc = (a + b + c){a² + b² + c² -(ab + bc + ca)}
3 - 3abc = (1) { 2 - (-1/2) }
3 - 3abc = 5/2
-3abc = -1/2
abc = 1/6 -----(2)
now,
a⁴ + b⁴ + c⁴ = {a² + b² + c² }² - 2{a²b² + b²c² + c²a² }
= (2)² - 2{(ab + bc + ca) ² - 2(ab.bc + bc.ca + ca.ab)}
= 4 - 2{ (-1/2)² - 2abc(a + b +c)}
= 4 - 2{ 1/4 -2 × 1/6 × (-1/2)}
= 4 - 2{ 1/4 + 1/6 }
= 4 - 5/6
= 19/6
Given : a+b+c = 1
a²+b²+c² = 2
a³+b³+c³ = 3
To Find : a⁴+b⁴+c⁴
Solution:
a²+b²+c² = 2
Squaring both sides
=> a⁴+b⁴+c⁴ + 2(a²b²+ a²c² +b²c²) = 4
=> a⁴+b⁴+c⁴ = 4 - 2(a²b²+ a²c² +b²c²)
=> a⁴+b⁴+c⁴ = 4 - 2(a²b²+ a²c² +b²c²)
a+b+c = 1
Squaring both sides
=> a²+b²+c² + 2(ab + bc + ac) = 1
=> 2 + 2(ab + bc + ac) = 1
=> 2(ab + bc + ac) = -1
=> ab + bc + ac = - 1/2
Squaring both sides
=> a²b²+ a²c² +b²c² + 2abc(a + b + c) = 1/4
=> a²b²+ a²c² +b²c² + 2abc = 1/4
=> a²b²+ a²c² +b²c² = 1/4 - 2abc
a³+b³+c³ - 3abc = (a+b+c ) ( a²+b²+c² - ( ab + bc + ac))
=> 3 - 3abc = 2 - (-1/2)
=> 3 - 3abc = 5/2
=> 3abc =5/2
=> abc = 1/6
a²b²+ a²c² +b²c² = 1/4 - 2abc
=> a²b²+ a²c² +b²c² = 1/4 - 2/6
=> a²b²+ a²c² +b²c² =- 1/12
a⁴+b⁴+c⁴ = 4 - 2(a²b²+ a²c² +b²c²)
=>a⁴+b⁴+c⁴ = 4 - 2(-1/12)
=> a⁴+b⁴+c⁴ = 25/6
Learn More:
a + b + c = 1 , a² + b² + c² = 2 , a³ + b³ + c³ = 3 , To Find : a⁵ + b⁵ + c⁵
https://brainly.in/question/44137292
a+b+c=3 a^2+b^2+c^2=6 1/a+1/b+1/c=1 find values of a , b and c ...
brainly.in/question/8061154