Math, asked by Rake1rrychetalkamah, 1 year ago

If a + b + c = 12 and ab + bc + ca = 47 , find the value of a2 + b2 + c2

Answers

Answered by MVB
16
We know,

(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca

⇒ a2 + b2 + c2 = (a + b + c)2 – 2 (ab + bc + ca)

⇒ a2 + b2 + c2 = (12)2 – 2 × 47 = 144 – 94 = 50 [a + b + c = 12 and ab + bc + ca = 47]

Thus, the value of a2 + b2 + c2 is 50

 


Similar questions