Math, asked by Arbabkhan3334, 1 year ago

If a+b+c=13 and ab+bc+ca=27,find a square +b square+c square

Answers

Answered by ronak335
18

Answer:

a+b+c=13

ab+bc+ca=27

(a+b+c)²=a²+b²+c²+2(ab+bc+ca)

(13)²=a²+b²+c²+2(27)

169=a²+b²+c²+54

a²+b²+c²=169-54

a²+b²+c²=115

HOPE IT WILL BE HELPFUL!

Answered by KomalSrinivas
2

The answer is 115.

Given: a + b + c = 13

           ab + bc + ca = 27

To Find: a² + b² + c²

Solution:

Taking the algebraic identity

(a + b + c)² = a² + b² + c² + 2(ab + bc + ca)

Substituting the values, we get,

⇒ (13)² = a² + b² + c² + 2(27)

⇒ 169 = a² + b² + c² + 54

⇒ a² + b² + c² = 169 - 54

⇒ a² + b² + c² = 115

Answer: The required value is 115.

#SPJ3

Similar questions