If a+b+c=13 and ab+bc+ca=27,find a square +b square+c square
Answers
Answered by
18
Answer:
a+b+c=13
ab+bc+ca=27
(a+b+c)²=a²+b²+c²+2(ab+bc+ca)
(13)²=a²+b²+c²+2(27)
169=a²+b²+c²+54
a²+b²+c²=169-54
a²+b²+c²=115
HOPE IT WILL BE HELPFUL!
Answered by
2
The answer is 115.
Given: a + b + c = 13
ab + bc + ca = 27
To Find: a² + b² + c²
Solution:
Taking the algebraic identity
(a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
Substituting the values, we get,
⇒ (13)² = a² + b² + c² + 2(27)
⇒ 169 = a² + b² + c² + 54
⇒ a² + b² + c² = 169 - 54
⇒ a² + b² + c² = 115
Answer: The required value is 115.
#SPJ3
Similar questions