If a+b+c=6 and ab+bc+ca=11, find the value of a3+b3+c3-3abc.
Answers
Answered by
149
we know that:
x3+y3+z3-3xyz=(x+y+z) (x2+y2+z2-xy-yz-zx)
let;
x=a, y=b, z=c
a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca)
a3+b3+c3-3abc=(6)(a2+b2+c2)-(ab+bc+ca)
a3+b3+c3-3abc=6(a2+b2+c2)-(11) (OR) (OR)
a3+b3+c3-3abc=6(a+b+c)(a+b+c)-11 =6(12)-11 =6+12-11
a3+b3+c3-3abc=6x6x6-11 =72-11 =19-11
a3+b3+c3-3abc=216-11 =61 =08
a3+b3+c3-3abc=-205
x3+y3+z3-3xyz=(x+y+z) (x2+y2+z2-xy-yz-zx)
let;
x=a, y=b, z=c
a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca)
a3+b3+c3-3abc=(6)(a2+b2+c2)-(ab+bc+ca)
a3+b3+c3-3abc=6(a2+b2+c2)-(11) (OR) (OR)
a3+b3+c3-3abc=6(a+b+c)(a+b+c)-11 =6(12)-11 =6+12-11
a3+b3+c3-3abc=6x6x6-11 =72-11 =19-11
a3+b3+c3-3abc=216-11 =61 =08
a3+b3+c3-3abc=-205
Amanraitela:
Hey FAMOUS5 your answer is wrong
Answered by
446
given a+b+c = 6 , ab + bc + ca = 11
( a + b + c )² = a² + b² + c² + 2 (ab + bc + ca)
⇒ (6)² = a² + b² + c² + 2(11) ⇒ a² + b² + c² = 36-22 = 14
now a³ + b³ + c³ -3abc= ( a + b + c) (a² + b² + c² - ab - bc - ca )
⇒ (6)(14 - 11) = 6. 3 = 18
hope u'll get my ans............doubts, ask?
( a + b + c )² = a² + b² + c² + 2 (ab + bc + ca)
⇒ (6)² = a² + b² + c² + 2(11) ⇒ a² + b² + c² = 36-22 = 14
now a³ + b³ + c³ -3abc= ( a + b + c) (a² + b² + c² - ab - bc - ca )
⇒ (6)(14 - 11) = 6. 3 = 18
hope u'll get my ans............doubts, ask?
Similar questions