Math, asked by ishuvishu786, 1 year ago

If a+b+c=6 and ab+bc+ca=11, find the value of a3+b3+c3-3abc.

Answers

Answered by FAMOUS5
149
we know that:
x3+y3+z3-3xyz=(x+y+z) (x2+y2+z2-xy-yz-zx)
let;
x=a, y=b, z=c
a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca)
a3+b3+c3-3abc=(6)(a2+b2+c2)-(ab+bc+ca)
a3+b3+c3-3abc=6(a2+b2+c2)-(11)                      (OR)              (OR)
a3+b3+c3-3abc=6(a+b+c)(a+b+c)-11              =6(12)-11       =6+12-11
a3+b3+c3-3abc=6x6x6-11                                 =72-11            =19-11
a3+b3+c3-3abc=216-11                                      =61                 =08
a3+b3+c3-3abc=-205








Amanraitela: Hey FAMOUS5 your answer is wrong
Amanraitela: The correct answer is 18
Answered by parisakura98pari
446
given  a+b+c = 6 ,  ab + bc + ca = 11

 ( a + b + c )² = a² + b² + c² + 2 (ab + bc + ca)
⇒ (6)² = a² + b² + c² + 2(11) ⇒ a² + b² + c² = 36-22 = 14

now a³ + b³ + c³ -3abc=  ( a + b + c) (a² + b² + c² - ab - bc - ca )

                             ⇒ (6)(14 - 11) = 6. 3 = 18

hope u'll get my ans............doubts, ask?

samyameen: thanks alot
Similar questions