If a+b+c=9 and ab+bc+ca=26, find the value of a³ +b³ +c³ -3abc.
Answers
Given : a + b + c = 9, ab + bc + ca = 26
On Squaring, a + b + c = 9 both sides, we get
(a + b + c)² = 9²
a² + b² + c² + 2 (ab + bc + ca) = 81
[By using an identity, (a + b + c)² = a² + b² + c² + 2ab + 2 bc + 2 ca)]
a² + b² + c² + 2 x 26 = 81
a² + b² + c² + 52 = 81
a² + b² + c² = 81 - 52
a² + b² + c² = 29………..(1)
Now, by using an identity , a³ + b³ + c³ - 3abc = (a + b + c) [(a² + b² + c² – ab - bc - ca)]
a³ + b³ + c³ - 3abc = (a + b + c) [a² + b² + c² – (ab + bc + ca)]
= 9[29 – 26]
[Given : a + b + c = 9, ab + bc + ca = 26 and from eq1]
= 9 x 3
= 27
a³ + b³ + c³ - 3abc = 27
Hence the value of a³ + b³ + c³ - 3abc is 27.
HOPE THIS ANSWER WILL HELP YOU…..
Similar questions :
If a+b=10 and ab=16, find the value of a²– ab+b²and a²+ab+b²
https://brainly.in/question/15897799
If x+y+z = 8 and xy+yz+zx =20, find the value of x³ +y³ +z³ -3xyz.
https://brainly.in/question/15897798
Answer:
Step-by-step explanation:
Given : a + b + c = 9, ab + bc + ca = 26
On Squaring, a + b + c = 9 both sides, we get
(a + b + c)² = 9²
a² + b² + c² + 2 (ab + bc + ca) = 81
[By using an identity, (a + b + c)² = a² + b² + c² + 2ab + 2 bc + 2 ca)]
a² + b² + c² + 2 x 26 = 81
a² + b² + c² + 52 = 81
a² + b² + c² = 81 - 52
a² + b² + c² = 29………..(1)
Now, by using an identity , a³ + b³ + c³ - 3abc = (a + b + c) [(a² + b² + c² – ab - bc - ca)]
a³ + b³ + c³ - 3abc = (a + b + c) [a² + b² + c² – (ab + bc + ca)]
= 9[29 – 26]
[Given : a + b + c = 9, ab + bc + ca = 26 and from eq1]
= 9 x 3
= 27
a³ + b³ + c³ - 3abc = 27