Math, asked by ramchandran5267, 1 year ago

If a b c are in ap and a b d are in gp then show that a, a-b d-c

Answers

Answered by Anushi007
22

Answer:

Step-by-step explanation:

2b=a+c

b^2=ad

From first multiplying a

2ab=a^2+ac

a^2-2ab=ac

Adding b^2

a^2+b^2-2ab=ac+b^2

(a+b)^2=ac+ad

Answered by mysticd
32

Answer:

\green { a, (a-b) \:and \: (d-c) \:are \: in \: G.P}

Step-by-step explanation:

 Given \: a,b \:and \: are \: in \:A.P

 b - a = c - b\: ( common \: difference )

 \implies 2b = a + c

/* Multiply each term by a , we get

 \implies 2ab = a^{2} + ac

 \implies 2ab + b^{2}  = a^{2} + b^{2} + ac

 \implies b^{2} = a^{2} + b^{2} -2ab + ac

 \implies b^{2} = ( a - b )^{2} + ac\:---(1)

 Given \: a,b \:and \: d \: are \: G.P

 \frac{b}{a} = \frac{d}{b} \: ( common \:ratio )

 \implies b^{2} = ad \: ---(2)

 \implies ( a - b )^{2} + ac = ad \:[From \:(1)]

 \implies ( a - b )^{2} + ac = ad

 \implies ( a - b )^{2}  = ad - ac

 \implies (a-b)^{2} = a(d-c)

 \implies \frac{(a-b)}{a} = \frac{(d-c)}{(a-b)}

Therefore.,

\green { a, (a-b) \:and \: (d-c) \:are \: in \: G.P}

•••♪

Similar questions