if a b c are three digits of a three digit number prove that abc + cab + bca.is a multiple of 37?
Answers
Answer:
abc+bca+cab=(100a+10b+c)+(100b+10c+a)+(100c+10a+b)
abc+bca+cab=(100a+10b+c)+(100b+10c+a)+(100c+10a+b)=111a+111b+111c
abc+bca+cab=(100a+10b+c)+(100b+10c+a)+(100c+10a+b)=111a+111b+111c=111(a+b+c)
abc+bca+cab=(100a+10b+c)+(100b+10c+a)+(100c+10a+b)=111a+111b+111c=111(a+b+c)=3×37(a+b+c)
abc+bca+cab=(100a+10b+c)+(100b+10c+a)+(100c+10a+b)=111a+111b+111c=111(a+b+c)=3×37(a+b+c)Therefore the number abc+bca+cab is divisible by3,37 and (a+b+c) but not by 9.
Step-by-step explanation:
Hope it's helps you
Given:
a, b, c are three digits of a number.
To Find:
abc+ cab+ bca is a multiple of 37.
Solution:
As given in the question, a, b, c are three digits of a number. Then, let the number be a, b, c.
⇒ abc+ bca+ cab
⇒ (100a+ 10b+ 1c)+ (100b+ 10c+ 1a)+ (100c+ 10a+ 1b)
⇒ 100(a+ b+ c)+ 10(a+ b+ c)+ 1(a+ b+ c)
⇒ abc(111)
⇒ abc(37)³
So, abc+ cab+ bca is divisible by 37.
Hence proved abc+ cab+ bca is a multiple of 37.