If A, B, C, D are angles of a cyclic quadrilateral, then prove that i. sin A - sin C = sin D - sin Bii. cos A + cos B + cos C + cos D = 0
Answers
Answered by
52
If A, B, C, D are angles of a cyclic quadrilateral then, A + C = B + D = 180° ........(1)
i. sinA - sinC = sinD - sinB
LHS = sinA - sinC
= sin(180° - C) - sinC [ from equation (1), ]
= sinC - sinC = 0
RHS = sinD - sinB
= sin(180° - B) - sinB [ from equation (1)]
= sinB - sinB = 0
hence, LHS = RHS
ii. LHS = cosA + cosB + cosC + cosD
= cosA + cos(180° - A) + cosC + cos(180° - C) [ from equation (1), ]
= cosA - cosA + cosC - cosC
= 0 + 0 = 0 = RHS
i. sinA - sinC = sinD - sinB
LHS = sinA - sinC
= sin(180° - C) - sinC [ from equation (1), ]
= sinC - sinC = 0
RHS = sinD - sinB
= sin(180° - B) - sinB [ from equation (1)]
= sinB - sinB = 0
hence, LHS = RHS
ii. LHS = cosA + cosB + cosC + cosD
= cosA + cos(180° - A) + cosC + cos(180° - C) [ from equation (1), ]
= cosA - cosA + cosC - cosC
= 0 + 0 = 0 = RHS
Answered by
22
HELLO DEAR,
GIVEN:-
A, B, C, D are angles of a cyclic quadrilateral then, A + C = B + D = 180° --------- ( 1 )
( i ). sinA - sinC = sinD - sinB
sinA - sinC
=> sin(180° - C) - sinC [ from ------- ( 1 ), ]
=> sinC - sinC = 0
AND
sinD - sinB
=> sin(180° - B) - sinB [ from ---------( 1 )]
=> sinB - sinB = 0
hence, LHS = RHS
( ii ). LHS = cosA + cosB + cosC + cosD
=> cosA + cos(180° - A) + cosC + cos(180° - C) [ from -----------( 1 ) ]
=> cosA - cosA + cosC - cosC
=> 0 + 0 = 0
I HOPE IT'S HELP YOU DEAR,
THANKS
GIVEN:-
A, B, C, D are angles of a cyclic quadrilateral then, A + C = B + D = 180° --------- ( 1 )
( i ). sinA - sinC = sinD - sinB
sinA - sinC
=> sin(180° - C) - sinC [ from ------- ( 1 ), ]
=> sinC - sinC = 0
AND
sinD - sinB
=> sin(180° - B) - sinB [ from ---------( 1 )]
=> sinB - sinB = 0
hence, LHS = RHS
( ii ). LHS = cosA + cosB + cosC + cosD
=> cosA + cos(180° - A) + cosC + cos(180° - C) [ from -----------( 1 ) ]
=> cosA - cosA + cosC - cosC
=> 0 + 0 = 0
I HOPE IT'S HELP YOU DEAR,
THANKS
Similar questions