If a cos θ - b sin θ = c, then show that a sin θ + b cos θ = ±
Answers
Answered by
4
Given, 
squaring both sides,

..........(1)
now, Let
squaring both sides,
......(2)
adding equations (1) and (2),

we know, sin²x + cos²x = 1
so,
or, a² + b² - c² = x²
taking square root both sides,
x =
hence, asin θ + bcos θ = ±
squaring both sides,
now, Let
squaring both sides,
adding equations (1) and (2),
we know, sin²x + cos²x = 1
so,
or, a² + b² - c² = x²
taking square root both sides,
x =
hence, asin θ + bcos θ = ±
Answered by
2
HELLO DEAR,
GIVEN:-
a cos θ - b sin θ = c
on squaring both side,
a²cos²θ + b²sin²θ - 2absinθcosθ = c²----------( 1 )
let
a sin θ + b cos θ = p
on squaring both side,
a²sin²θ + b²cos²θ + 2absinθcosθ = p²---------( 2 )
now, adding---------( 1 ) & ----------( 2 )
a²(sin²θ + cos²θ) + b²(sin²θ + cos²θ) = p² + c²
[sin²x + cos²x = 1]
=> a² + b² - c² = p²
=> p = ±√(a² + b² - c²)
I HOPE IT'S HELP YOU DEAR,
THANKS
GIVEN:-
a cos θ - b sin θ = c
on squaring both side,
a²cos²θ + b²sin²θ - 2absinθcosθ = c²----------( 1 )
let
a sin θ + b cos θ = p
on squaring both side,
a²sin²θ + b²cos²θ + 2absinθcosθ = p²---------( 2 )
now, adding---------( 1 ) & ----------( 2 )
a²(sin²θ + cos²θ) + b²(sin²θ + cos²θ) = p² + c²
[sin²x + cos²x = 1]
=> a² + b² - c² = p²
=> p = ±√(a² + b² - c²)
I HOPE IT'S HELP YOU DEAR,
THANKS
Similar questions