Prove that cos⁴ α + 2 cos² α = (1 - sin⁴ α)
Answers
Answered by
4
LHS =
we know,
so,
[ we know, sin²x + cos²x = 1 , so, and ]
use (a + b)(a - b) = a² - b²
then, = RHS
we know,
so,
[ we know, sin²x + cos²x = 1 , so, and ]
use (a + b)(a - b) = a² - b²
then, = RHS
Answered by
5
HELLO DEAR,
GIVEN:- cos⁴α + 2cos²α(1 - 1/sec²α)
=> cos⁴α + 2cos²α(1 - cos²α)
=> cos⁴α + 2cos²α - 2cos⁴α
=> 2cos²α - cos⁴α
=> cos²α(2 - cos²α)
=> cos²α{1 + (1 - cos²α)}
=> (1 - sin²α)(1 + sin²α)
[as, (a - b)(a + b) = a² - b²]
=> 1 - sin⁴α
I HOPE IT'S HELP YOU DEAR,
THANKS
GIVEN:- cos⁴α + 2cos²α(1 - 1/sec²α)
=> cos⁴α + 2cos²α(1 - cos²α)
=> cos⁴α + 2cos²α - 2cos⁴α
=> 2cos²α - cos⁴α
=> cos²α(2 - cos²α)
=> cos²α{1 + (1 - cos²α)}
=> (1 - sin²α)(1 + sin²α)
[as, (a - b)(a + b) = a² - b²]
=> 1 - sin⁴α
I HOPE IT'S HELP YOU DEAR,
THANKS
Similar questions