Math, asked by BrainlyShadow01, 3 months ago

If a , b , c , d are in continued proportion , prove that : -

1 ) 2a + 3d : 3a - 4d = 2a³ + 3b³ : 3a³ - 4b³


2) (a² + b² + c²) (b² + c² + d² ) = (ab + bc + cd)²


Irrelevant answers will be deleted.​

Answers

Answered by Anonymous
46

Given -

  • a, b and c are in continued proportion.

To prove -

  1. 2a + 3d : 3d - 4d = 2a³ + 3b³ : 3a³ - 4b³
  2. (a² + b² + c²) (b² + c² + d²) = (ab + bc + cd)²

Solution 1 -

We know \dfrac{a}{b} = \dfrac{b}{c} = \dfrac{c}{d} = k, then

  • a = bk = ck² = dk³
  • b = ck = dk²
  • c = dk

To prove :- \bf{\dfrac{2a + 3d}{3a - 4d} = \dfrac{2a^3 + 3b^3}{3a^3 - 4b^3}}

Taking L.H.S

\sf{\dashrightarrow{\dfrac{2a + 3d}{3a - 4d}}}

\sf{\dashrightarrow{\dfrac{2dk^3 + 3d}{3dk^3 - 4d}}}

\sf{\dashrightarrow{\dfrac{2k^3 + 3}{3k^3 - 4}}}

Now, solving R.H.S

\sf{\dashrightarrow{\dfrac{2a^3 + 3b^3}{3a^3 - 4b^3}}}

\sf{\dashrightarrow{\dfrac{2d^3 k^9 + 3d^3 k^6}{3d^3 k^9 - 4d^3 k^6}}}

\sf{\dashrightarrow{\dfrac{d^3 k^6 (2k^3 + 3)}{d^3 k^6 (3k^3 - 4)}}}

\sf{\dashrightarrow{\dfrac{2k^3 + 3}{3k^3 - 4}}}

•°• L.H.S = R.H.S

Hence proved

⠀━━━━━━━━━━━━━━━━━━━━

Solution 2 -

We know that,

  • a = bk
  • b = ck
  • c = dk

To prove :- (a² + b² + c²) (b² + c² + d²) = (ab + bc + cd)²

Substituting the values of a, b and c

\sf{\dashrightarrow{[ (bk)^2 + (ck)^2+ (dk)^2 ] (b^2 + c^2 + d^2) = (b^2 k + c^2 k + d^2 k)^2}}

\sf{\dashrightarrow{[b^2 k^2 + c^2 k^2 + d^2 k^2] (b^2 + c^2 + d^2) = k^2(b^2 + c^2 + d^2)^2}}

\sf{\dashrightarrow{k^2(b^2 + c^2 + d^2) (b^2 + c^2 + d^2) = k^2 (b^2 + c^2 + d^2)^2}}

\sf{\dashrightarrow{(b^2+ c^2 + d^2)^2 = (b^2 + c^2 + d^2)^2}}

•°• L.H.S = R.H.S

Hence proved

━━━━━━━━━━━━━━━━━━━━━━


TheValkyrie: Awesome!
Answered by Anonymous
3

Answer:

Given -

a, b and c are in continued proportion.

To prove -

2a + 3d : 3d - 4d = 2a³ + 3b³ : 3a³ - 4b³

(a² + b² + c²) (b² + c² + d²) = (ab + bc + cd)²

Solution 1 -

We know \dfrac{a}{b} = \dfrac{b}{c} = \dfrac{c}{d} = k

b

a

=

c

b

=

d

c

=k , then

a = bk = ck² = dk³

b = ck = dk²

c = dk

To prove :- \bf{\dfrac{2a + 3d}{3a - 4d} = \dfrac{2a^3 + 3b^3}{3a^3 - 4b^3}}

3a−4d

2a+3d

=

3a

3

−4b

3

2a

3

+3b

3

Taking L.H.S

\sf{\dashrightarrow{\dfrac{2a + 3d}{3a - 4d}}}⇢

3a−4d

2a+3d

\sf{\dashrightarrow{\dfrac{2dk^3 + 3d}{3dk^3 - 4d}}}⇢

3dk

3

−4d

2dk

3

+3d

\sf{\dashrightarrow{\dfrac{2k^3 + 3}{3k^3 - 4}}}⇢

3k

3

−4

2k

3

+3

Now, solving R.H.S

\sf{\dashrightarrow{\dfrac{2a^3 + 3b^3}{3a^3 - 4b^3}}}⇢

3a

3

−4b

3

2a

3

+3b

3

\sf{\dashrightarrow{\dfrac{2d^3 k^9 + 3d^3 k^6}{3d^3 k^9 - 4d^3 k^6}}}⇢

3d

3

k

9

−4d

3

k

6

2d

3

k

9

+3d

3

k

6

\sf{\dashrightarrow{\dfrac{d^3 k^6 (2k^3 + 3)}{d^3 k^6 (3k^3 - 4)}}}⇢

d

3

k

6

(3k

3

−4)

d

3

k

6

(2k

3

+3)

\sf{\dashrightarrow{\dfrac{2k^3 + 3}{3k^3 - 4}}}⇢

3k

3

−4

2k

3

+3

•°• L.H.S = R.H.S

➛ Hence proved

⠀━━━━━━━━━━━━━━━━━━━━

Solution 2 -

We know that,

a = bk

b = ck

c = dk

To prove :- (a² + b² + c²) (b² + c² + d²) = (ab + bc + cd)²

Substituting the values of a, b and c

\sf{\dashrightarrow{[ (bk)^2 + (ck)^2+ (dk)^2 ] (b^2 + c^2 + d^2) = (b^2 k + c^2 k + d^2 k)^2}}⇢[(bk)

2

+(ck)

2

+(dk)

2

](b

2

+c

2

+d

2

)=(b

2

k+c

2

k+d

2

k)

2

\sf{\dashrightarrow{[b^2 k^2 + c^2 k^2 + d^2 k^2] (b^2 + c^2 + d^2) = k^2(b^2 + c^2 + d^2)^2}}⇢[b

2

k

2

+c

2

k

2

+d

2

k

2

](b

2

+c

2

+d

2

)=k

2

(b

2

+c

2

+d

2

)

2

\sf{\dashrightarrow{k^2(b^2 + c^2 + d^2) (b^2 + c^2 + d^2) = k^2 (b^2 + c^2 + d^2)^2}}⇢k

2

(b

2

+c

2

+d

2

)(b

2

+c

2

+d

2

)=k

2

(b

2

+c

2

+d

2

)

2

\sf{\dashrightarrow{(b^2+ c^2 + d^2)^2 = (b^2 + c^2 + d^2)^2}}⇢(b

2

+c

2

+d

2

)

2

=(b

2

+c

2

+d

2

)

2

•°• L.H.S = R.H.S

➛ Hence proved

━━━━━━━━━━━━━━━━━━━━━━

Please brainlest me the answer

Similar questions