If a , b , c , d are in continued proportion , prove that : -
1 ) 2a + 3d : 3a - 4d = 2a³ + 3b³ : 3a³ - 4b³
2) (a² + b² + c²) (b² + c² + d² ) = (ab + bc + cd)²
Irrelevant answers will be deleted.
Answers
Given -
- a, b and c are in continued proportion.
⠀
To prove -
- 2a + 3d : 3d - 4d = 2a³ + 3b³ : 3a³ - 4b³
- (a² + b² + c²) (b² + c² + d²) = (ab + bc + cd)²
⠀
Solution 1 -
⠀
We know , then
- a = bk = ck² = dk³
- b = ck = dk²
- c = dk
⠀
To prove :-
⠀
Taking L.H.S
⠀
⠀
⠀
Now, solving R.H.S
⠀
⠀
⠀
⠀
•°• L.H.S = R.H.S
➛ Hence proved
⠀━━━━━━━━━━━━━━━━━━━━
⠀
Solution 2 -
⠀
We know that,
- a = bk
- b = ck
- c = dk
⠀
To prove :- (a² + b² + c²) (b² + c² + d²) = (ab + bc + cd)²
⠀
Substituting the values of a, b and c
⠀
⠀
⠀
⠀
•°• L.H.S = R.H.S
➛ Hence proved
━━━━━━━━━━━━━━━━━━━━━━
Answer:
Given -
a, b and c are in continued proportion.
⠀
To prove -
2a + 3d : 3d - 4d = 2a³ + 3b³ : 3a³ - 4b³
(a² + b² + c²) (b² + c² + d²) = (ab + bc + cd)²
⠀
Solution 1 -
⠀
We know \dfrac{a}{b} = \dfrac{b}{c} = \dfrac{c}{d} = k
b
a
=
c
b
=
d
c
=k , then
a = bk = ck² = dk³
b = ck = dk²
c = dk
⠀
To prove :- \bf{\dfrac{2a + 3d}{3a - 4d} = \dfrac{2a^3 + 3b^3}{3a^3 - 4b^3}}
3a−4d
2a+3d
=
3a
3
−4b
3
2a
3
+3b
3
⠀
Taking L.H.S
\sf{\dashrightarrow{\dfrac{2a + 3d}{3a - 4d}}}⇢
3a−4d
2a+3d
⠀
\sf{\dashrightarrow{\dfrac{2dk^3 + 3d}{3dk^3 - 4d}}}⇢
3dk
3
−4d
2dk
3
+3d
⠀
\sf{\dashrightarrow{\dfrac{2k^3 + 3}{3k^3 - 4}}}⇢
3k
3
−4
2k
3
+3
⠀
Now, solving R.H.S
\sf{\dashrightarrow{\dfrac{2a^3 + 3b^3}{3a^3 - 4b^3}}}⇢
3a
3
−4b
3
2a
3
+3b
3
⠀
\sf{\dashrightarrow{\dfrac{2d^3 k^9 + 3d^3 k^6}{3d^3 k^9 - 4d^3 k^6}}}⇢
3d
3
k
9
−4d
3
k
6
2d
3
k
9
+3d
3
k
6
⠀
\sf{\dashrightarrow{\dfrac{d^3 k^6 (2k^3 + 3)}{d^3 k^6 (3k^3 - 4)}}}⇢
d
3
k
6
(3k
3
−4)
d
3
k
6
(2k
3
+3)
⠀
\sf{\dashrightarrow{\dfrac{2k^3 + 3}{3k^3 - 4}}}⇢
3k
3
−4
2k
3
+3
⠀
•°• L.H.S = R.H.S
➛ Hence proved
⠀━━━━━━━━━━━━━━━━━━━━
⠀
Solution 2 -
⠀
We know that,
a = bk
b = ck
c = dk
⠀
To prove :- (a² + b² + c²) (b² + c² + d²) = (ab + bc + cd)²
⠀
Substituting the values of a, b and c
\sf{\dashrightarrow{[ (bk)^2 + (ck)^2+ (dk)^2 ] (b^2 + c^2 + d^2) = (b^2 k + c^2 k + d^2 k)^2}}⇢[(bk)
2
+(ck)
2
+(dk)
2
](b
2
+c
2
+d
2
)=(b
2
k+c
2
k+d
2
k)
2
⠀
\sf{\dashrightarrow{[b^2 k^2 + c^2 k^2 + d^2 k^2] (b^2 + c^2 + d^2) = k^2(b^2 + c^2 + d^2)^2}}⇢[b
2
k
2
+c
2
k
2
+d
2
k
2
](b
2
+c
2
+d
2
)=k
2
(b
2
+c
2
+d
2
)
2
⠀
\sf{\dashrightarrow{k^2(b^2 + c^2 + d^2) (b^2 + c^2 + d^2) = k^2 (b^2 + c^2 + d^2)^2}}⇢k
2
(b
2
+c
2
+d
2
)(b
2
+c
2
+d
2
)=k
2
(b
2
+c
2
+d
2
)
2
⠀
\sf{\dashrightarrow{(b^2+ c^2 + d^2)^2 = (b^2 + c^2 + d^2)^2}}⇢(b
2
+c
2
+d
2
)
2
=(b
2
+c
2
+d
2
)
2
⠀
•°• L.H.S = R.H.S
➛ Hence proved
━━━━━━━━━━━━━━━━━━━━━━
Please brainlest me the answer