if a + b + C is equal to 6 a square + b square + c square is equal to 14 and a cube plus b cube plus c cube is equal to 36 then prove that ABC is equal to 6
Answers
Answered by
29
hey mate
here's the solution
here's the solution
Attachments:
Answered by
39
Solution :
It is given that ,
a + b + c = 6 ----( 1 )
a² + b² + c² = 14 ---( 2 )
a³ + b³ + c³ = 36 ---( 3 )
************************************
We know the algebraic identities,
1 ) ( a + b + c )² =a²+b²+c²+2(ab+bc+ca)
2)a³+b³+c³-3abc=(a+b+c)[a²+b²+c²-ab-bc-ca)
*****************************************
Here ,
Do the square of equation ( 1 ),
( a+b+c)² = 6²
=> a²+b²+c² + 2(ab+bc+ca) = 36
=> 14 + 2(ab+bc+ca ) = 36
=> ab+bc+ca = 22/2
=> ab+bc+ca = 11 ---( 4 )
Now ,
a³+b³+c³ -3abc=(a+b+c)[a²+b²+c²-(ab+bc+ca)]
=>36 -3abc = 6[14 - 11 ]
=> 36 - 3abc = 6 × 3
=> 36 - 18 = 3abc
=> 18 = 3abc
=> 18/3 = abc
=> 6 = abc
Therefore ,
abc = 6
•••••
It is given that ,
a + b + c = 6 ----( 1 )
a² + b² + c² = 14 ---( 2 )
a³ + b³ + c³ = 36 ---( 3 )
************************************
We know the algebraic identities,
1 ) ( a + b + c )² =a²+b²+c²+2(ab+bc+ca)
2)a³+b³+c³-3abc=(a+b+c)[a²+b²+c²-ab-bc-ca)
*****************************************
Here ,
Do the square of equation ( 1 ),
( a+b+c)² = 6²
=> a²+b²+c² + 2(ab+bc+ca) = 36
=> 14 + 2(ab+bc+ca ) = 36
=> ab+bc+ca = 22/2
=> ab+bc+ca = 11 ---( 4 )
Now ,
a³+b³+c³ -3abc=(a+b+c)[a²+b²+c²-(ab+bc+ca)]
=>36 -3abc = 6[14 - 11 ]
=> 36 - 3abc = 6 × 3
=> 36 - 18 = 3abc
=> 18 = 3abc
=> 18/3 = abc
=> 6 = abc
Therefore ,
abc = 6
•••••
Similar questions
Social Sciences,
7 months ago
Business Studies,
7 months ago
Social Sciences,
1 year ago
Hindi,
1 year ago