Math, asked by PragyaTbia, 1 year ago

If A + B + C = π, then prove that cos^{2}\frac{A}{2} + cos^{2}\frac{B}{2} - cos^{2}\frac{C}{2} = 2 cos\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}.

Answers

Answered by hukam0685
0

Answer:


Step-by-step explanation:

if A + B + C = π

then to prove

 cos^{2}\frac{A}{2} + cos^{2}\frac{B}{2} - cos^{2}\frac{C}{2} = 2 cos\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}\\

let us take LHS

=cos^{2}\frac{A}{2} + cos^{2}\frac{B}{2} - cos^{2}\frac{C}{2} \\\\

as we know from half angle formula

cos^{2}\frac{A}{2} =\frac{1}{2} (1+cos\:A)\\

so put all these values

=\frac{1}{2} (1+cos\:A)+\frac{1}{2} (1+cos\:B)-\frac{1}{2} (1+cos\:C)\\\\=\frac{1}{2}+\frac{1}{2}(cosA+cosB-cosC)\\\\=\frac{1}{2}+\frac{1}{2}[(4cos\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2})-1]\\\\\\=2cos\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}\\\\

=RHS

hence proved



Similar questions