Physics, asked by jainshruti400, 8 months ago

if a block A is moving with acceleration of 5ms^2 , the acceleration of B w.r.t. ground is

a) 5ms^2
B)5√2ms^2
C )5√5ms^2
d)10ms^2
figure is attached..
pls solve ​

Attachments:

Answers

Answered by amansharma264
35

 \bf \to \:  \green{{ \underline{given \div }}}

 \sf \to \: block \: a \: is \: moving \: with \: acceleration \: of \:  = 5 {ms}^{2}

 \bf \to \:  \orange{{ \underline{to \: find \: the \: acceleration \: of \: b \: w.r.t \: ground}}}

 \bf \to \:  \pink{{ \underline{step \: -  by \:  - step \:  - explanation}}}

 \sf \to \: acceleration \: of \: a \:  = 5 {ms}^{2}  \\  \\  \sf \to \: by \: using \: virtual \: work \: method \\  \\  \sf \to \: acceleration \: of \: b \: w.r.t \: a \: is \:  = 10 {ms}^{2} downward \\  \\  \sf \to \: b \: has \: an \: acceleration \:  = 5 {ms}^{2} in \: horizontal \: direction \: along \: with \: a \\  \\  \sf \to \: so \: net \: acceleration \: of \: b \: is \\  \\  \sf \to \:  \sqrt{ {10}^{2} +  {5}^{2}  } =  \sqrt{125}   = 5 \sqrt{5} ms {}^{ - 2}

 \bf \to \: { \underline{method \:  = 2}}

 \sf \to \: when \: you \: assume \: block \: a \: is \: reference \\  \\  \sf \to \: let \: the \: tension \: of \: string \:  =  t_{1} \: and \:  t_{2} \: and \:  t_{3} \: and \:  t_{4} \: is \\  \\  \sf \to \: let \: the \: string \: is \:  =  l_{1} \:  +  l_{2} \:  +  l_{3} \:  +  \:  l_{4} \\  \\  \sf \to \: by \: using \: the \: double \: differentiate \: we \: get \\  \\  \sf \to \:  a_{1} \:  +  a_{2} \:  +  a_{3} \:  +  a_{4} \:  = 0 \\  \\  \sf \to \: ( - a) + 0 + ( - a) + ( + b) = 0 \\  \\  \sf \to \:  - 2a + b \:  = 0 \\  \\  \sf \to \: b \:   = 2a \\  \\  \sf \to \: since \: block \: b \: is \: always \: in \: contact \: to \: block \: a \\  \\  \sf \to s_{x} \:  = ( v_{net})  _{x}   = 0 \\  \\  \sf \to \: a - c =  0 \implies{a \:  = c} \\  \\  \sf \to \:  \sqrt{ { a}^{2}  +   {b}^{2}  }  =  \sqrt{ {a}^{2} +  {2a}^{2}  }  \\  \\  \sf \to \:  \sqrt{5a {}^{2} } = a \sqrt{5}   \\  \\  \sf \to \: a \:  = 5ms {}^{2} = given \\  \\  \sf \to \: 5 \sqrt{5}ms {}^{2} \\  \\  \sf \to \:  \green{{ \underline{the \: acceleration \: of \: b \: w.r.t \: ground \:  = 5 \sqrt{5}ms {}^{2} }  }}


Anonymous: Nice :D
Answered by SaI20065
75

\small\sf\blue{Given}

▪︎a block A is moving with accleration of 5ms²

\small\sf\blue{Answer}

▪︎option C

\small\sf\blue{step\:by\:explanation\:}

▪︎lengthofstring l1+l2+l3+l4

▪︎l=l1+l2+l3+l4

▪︎\small\sf\blue{By\: double\: differentiation\: w.r.t t,\:}

▪︎\small\sf\blue{we\:have\:}

▪︎0=a1+a2+a3+a4

▪︎⇒0=a+0+a+a4

▪︎−2a=a4

▪︎\small\sf\blue{wrt \:ground\:}

▪︎\small\sf\blue{acceleration \:of\: Block-B\:}

▪︎⇒aB=a4+a

▪︎⇒aB=∣a4+a

▪︎⇒aB=a42

▪︎⇒aB=√a42+a2+2a4−a(d)

▪︎⇒aB=√4a2+a2+2a(2a)co(90∘)

▪︎⇒aB=5a

▪︎As a=5m/s2

▪︎aB=5√5m/s

▪︎Option −C

Attachments:
Similar questions