If A is a square matrix such that A2=A, then write the value of 7A−(I+A)3 where I is an identity matrix.
Answers
Answered by
7
Answer:
given A2=A
7A−(I+A)3=7A−[I3+3A2I+3AI2+A3]
=7A−[I+3A+3A+A2.A]
=7A−[I+3A+3A+A]
=7A−I+7A
=−I
Answered by
0
Answer:
7A-(1+A)^3=7A-(1^3+A^3+3×1^2×A+3×1×A^2)
7A-(1+A^3+3A+3A^2)
7A-(1+A×A+3A+3A×A)
7A-(1+A×A+3A+3A)
7A-(1+A^2+6A)
7A-(1+A+6A) (because A2=A
7A-(1+7A)
7A-1-7A
-1
so 7A-(1+A)^3=-1
Similar questions