Math, asked by jaanu1334, 1 year ago

If "a sin square theta + b cos square theta" equal to c.Then what is the value of tan square theta????

Answers

Answered by newton82
23

a \ { \sin}^{2} \alpha  + b { \cos}^{2}  \alpha  = c
 { \tan}^{2}  \alpha  =  \frac{(c - b  { \ \cos  }^{2}  \alpha  )b }{(c -  {a \sin}^{2} \alpha ) a}
  { \tan }^{2}  \alpha =   \frac{cb -  {b}^{2} { \cos}^{2}  \alpha  }{ca -  {a}^{2} { \sin}^{2}  \alpha  }
Answered by FelisFelis
6

Answer:

the value of  \tan^{2} \theta is \frac{c \sec^{2} \theta-b}{a}

Step-by-step explanation:

If a \sin^{2} \theta +b \cos^{2} \theta = c

we need to find the value of \tan^{2} \theta

As,  a \sin^{2} \theta +b \cos^{2} \theta = c

divide both the side by  a \cos^{2} \theta

\frac{a \sin^{2} \theta}{a \cos^{2} \theta} +\frac{b \cos^{2} \theta}{{a \cos^{2} \theta}} = \frac{c}{{a \cos^{2} \theta}}

\tan^{2} \theta+\frac{b}{a} =\frac{c}{a}\sec^{2} \theta

subtract both the sides by \frac{b}{a}

\tan^{2} \theta =\frac{c}{a}\sec^{2} \theta - \frac{b}{a}

\tan^{2} \theta =\frac{c\sec^{2} \theta-b}{a}

Hence, the value of  \tan^{2} \theta is \frac{c \sec^{2} \theta-b}{a}

Similar questions