Math, asked by swarajpattanaik1445, 11 months ago

If a straight line perpendicular to 2x-3y+7=0forms a triangle with coordinate axes whose area is 3 sq units then equation of straight line is

Answers

Answered by knjroopa
12

Step-by-step explanation:

Given If a straight line perpendicular to 2x-3y+7=0forms a triangle with coordinate axes whose area is 3 sq units then equation of straight line is    

  • Given 2x – 3y + 7 = 0
  • We can write this as 3y = 2x + 7
  •                      Or y = 2/3 x + 7/3
  • So slope of the line will be m 1 = 2/3 (since y = mx + c)
  • Now slope of line perpendicular to given line will be m2
  • If two lines are perpendicular then the product of their slope will be = to – 1
  • Therefore m1.m2 = - 1
  •                 2/3 . m2 = - 1
  •                     Or m2 = - 3/2
  • So equation of the perpendicular line will be y = - 3/2 x + c
  •                                                   Now 2y = - 3x + 2c
  •                                                   Or 2c = 3x + 2y ---------1
  •                                                   Or 1 = 3x / 2c + 2y / 2c
  •            Now we can write this as x / 2c / 3 + y/c = 1
  • We will now have a triangle formed with the coordinate axis.
  •                   Area of triangle = ½ x base x height
  •                                              = ½ x 2/3 c x c
  •        Now area of triangle = 3 sq units
  •                       So 3 = c^2 / 3
  •                   Or c^2 = 9
  •                   C = + - 3
  • Substituting the value in equation 1 we get
  •             3x + 2y + 6 = 0 and 3x + 2y – 6 = 0

Reference link will be

https://brainly.in/question/14790298

Similar questions