Math, asked by tarachandbora8613, 1 year ago

if a variable line in two adjacent positions has direction cosines l,m,n and l+$l,m+$m,n+$n show that the small angle $x between two positions is given by ($x)^2=($l)^2+($m)^2+($n)^2.

Answers

Answered by ExoticExplorer
2
Step 1:Let the direction cosines of the two lines be d1=(l,m,n)andd2=(l+δl,m+δm,n+δn)d1=(l,m,n)andd2=(l+δl,m+δm,n+δn)We know that angle θθ between two lines is given bycosθ=(d→1.d→2)cosθ=(d→1.d→2)It is given that the angle between the lines is δθδθ⇒cosδθ=(l,m,n).(l+δl,m+δm,n+δn)⇒cosδθ=(l,m,n).(l+δl,m+δm,n+δn)=l(l+δl)+m(m+δm)+n(n+δn)=l(l+δl)+m(m+δm)+n(n+δn)On expanding we get,l2+m2+n2+lδl+mδm+nδn=0l2+m2+n2+lδl+mδm+nδn=0Step 2:We know that l2+m2+n2=1l2+m2+n2=1Square of direction cosines is one.Therefore ⇒cosδθ=lδl+mδm+nδn+1⇒cosδθ=lδl+mδm+nδn+1..........(i)l2+m2+n2=1and(l+δl)2+(m+δm)2+(n+δn)2=1l2+m2+n2=1and(l+δl)2+(m+δm)2+(n+δn)2=1On expanding we get,⇒1+δl2m2n2+2lδl+2mδm+2nδn=1⇒1+δl2m2n2+2lδl+2mδm+2nδn=1⇒1+δl2m2n2+2(lδl+mδm+nδn)=1⇒1+δl2m2n2+2(lδl+mδm+nδn)=1Substituting for l2+m2+n2=1l2+m2+n2=1Step 3:1+δl2m2n2+2(lsl+msm+nδn)=11+δl2m2n2+2(lsl+msm+nδn)=1⇒δl2m2n2+2(cosδθ−1)=0⇒δl2m2n2+2(cosδθ−1)=0⇒δl2m2n2=2(1−cosδθ)⇒δl2m2n2=2(1−cos⁡δθ)But 1−cos2θ=2sin2θ/21−cos2θ=2sin2θ/2⇒δl2m2n2=2(2sin2δθ2)⇒δl2m2n2=2(2sin2δθ2)⇒δl2m2n2=4sin2δθ2⇒δl2m2n2=4sin2δθ2If θθ is small then sinθ≈θsinθ≈θ∴4δθ24∴4δθ24l2m2n2l2m2n2⇒δθ=δl2m2n2⇒δθ=δl2m2n2Hence proved
Hope This Helps :)

ExoticExplorer: For this, uh should basically know:
ExoticExplorer: 1−cos2θ=2sin2θ
Angle between two lines in cosθ=(d1→.d2→)
Similar questions